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Zusammenfassung

Starke Temperaturgradienten können in einem polaren Medium zu molekularer
Reorientierung führen und es dadurch polarisieren. Dieses Phänomen wird als
„Thermo-Polarisationseffekt“ bezeichnet. Kürzlich ist es Bresme und Mitarbeitern
gelungen, das in Wasser dabei entstehende Feld mit Hilfe von Computersimula-
tionen nachzuweisen. Es konnte eine lineare Abhängigkeit des Feldes vom Tem-
peraturgradienten demonstriert werden, was im Einklang mit den theoretischen
Vorhersagen der Nichtgleichgewichtsthermodynamik steht. In der vorliegenden Ar-
beit wurde die Abhängigkeit des auftretenden elektrostatischen Feldes von der Be-
handlung langreichweitiger Wechselwirkungen untersucht. Dazu wurden Computer-
simulationen von Wasser mit zwei unterschiedlichen Summationstechniken, nämlich
Wolf-Summation und Ewald-Summation, durchgeführt. Dabei ist aufgefallen, dass
ein oftmals zuvor verwendeter Algorithmus die Gesamtenergie im System nicht er-
hält und dadurch ein erheblicher Energieverlust entsteht. Der Grund dafür konnte
identifiziert und behoben werden, was zu einem neuen, verbesserten Algorithmus
führt. Des Weiteren konnte gezeigt werden, dass die Behandlung langreichweitiger
Wechselwirkungen nur geringe Auswirkungen auf das Feld hat, wenn die in der Si-
mulation verwendeten Randbedingungen bei der Berechnung berücksichtigt werden.
Diese Ergebnisse stehen damit im Gegensatz zu früheren Berichten.





Abstract

In a polar fluid, strong temperature gradients can lead to molecular reorienta-
tion and polarisation, a phenomenon called ‘thermo-polarisation effect’. Recently
Bresme and co-workers reported the establishment of an electrostatic field in simu-
lations of liquid water in the presence of strong temperature gradients. They were
able to demonstrate that the fields so obtained are proportional to the temperat-
ure gradients as predicted by non-equilibrium thermodynamics. Motivated by the
work of Bresme and co-workers, we investigated the dependence of the electrostatic
field on the underlying treatment of electrostatic interactions for Wolf summation
and Ewald summation. We noticed that the algorithm employed previously causes
an unphysical energy drift. Based on analytical work, we were able to identify
the cause of this problem and suggest an improved algorithm that conserves the
total energy in the system. Furthermore, in contrast to previous reports, we show
that the polarisation effect is largely independent of the treatment of long-range
electrostatic interactions, if the field is calculated in accordance with the employed
boundary conditions.
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Chapter 1

Introduction

In this work we investigate the behaviour of water subjected to a strong thermal
gradient. In particular, we carry out a series of non-equilibrium molecular dynamics
(NEMD) simulations to study the effect of thermal polarisation due to a strong
gradient in temperature. We first explain our motivation for carrying out this
work in §1.1. The underlying theoretical framework is given by non-equilibrium
thermodynamics (NET) and a brief summary of the relevant predictions of the
theory is given in §1.2. Subsequently, the basic idea of NEMD is introduced in §1.3.1
in order to illustrate how the technique can be utilised for studying the system under
consideration. Finally, we give an outline of the remainder of this report in §1.4.

1.1 Motivation and previous work

Non-equilibrium phenomena are ubiquitous in nature and of importance in chem-
istry, physics, biology and materials science [1], to name but a few. Several of these
effects are related to strong thermal gradients which may, for example, be caused
by chemical reactions at surfaces [1] or local hot spots arising from ultrasonic in-
sonation [2]. The Peltier effect, as an example of a thermoelectric effect, as well as
the Soret effect, or thermophoresis, both fall in this category [1]. From a practical
standpoint, this could be of significance for reusing dissipated heat by converting
it into other forms of energy [3]. As water is undoubtedly a very important sub-
stance in all these fields [4], understanding its microscopic behaviour under such
conditions is highly relevant.

Recently, Bresme and co-workers expended considerable effort investigating the be-
haviour of water in the vicinity of strong thermal gradients [1, 3–8]. Motivated
by the predictions of NET, they carried out NEMD simulations and were able to
confirm the hypothesised rearrangement of molecules in response to a temperat-

1



2 CHAPTER 1. INTRODUCTION

ure gradient, consequently leading to a net polarisation. Furthermore, they could
demonstrate that the induced electrostatic field does indeed scale linearly with the
temperature gradient. The reported fields were as high as 108 V/m for gradients
of 3 K/Å. In subsequent work [3], Armstrong and co-workers determined the ther-
modynamic states that maximise the polarisation effect, thus providing a useful
guideline for future investigations.

We find these results very interesting and believe that the findings of Bresme and co-
workers are potentially relevant for a phenomenon called sonocrystallisation. This
phenomenon comprises the enhancement of crystallisation processes by ultrasonic
radiation. Many researchers agree that cavitation is a crucial factor for sonocrys-
tallisation. Cavitation is the process of nucleation in a liquid when the pressure
falls below the vapor pressure. If sound waves lead to the formation of cavita-
tion bubbles, it is referred to as acoustic cavitation. The bubbles so formed can
either oscillate around a stable equilibrium radius (stable cavitation) or collapse
violently after an initial period of rapid growth (transient cavitation). The latter
can trigger a shock wave and very high pressures and temperatures in the vicinity
of the collapsing bubble [9, 10]. The resulting temperature gradients were estim-
ated to be comparable to the ones considered in previous investigations on the
thermo-polarisation effect [11]. We therefore think that a better understanding of
molecular reorientation as a response to strong thermal gradients could be of direct
importance for sonocrystallisation.

Another potential application could be the effective interaction of nanoparticles in
a water bath. Experimentally, it is nowadays possible to heat up nanoparticles
individually, for example by electromagnetic irradiation [12, 13]. Furthermore, it is
known that the temperature decays as r−1 around a nanoparticle [12]. For strong
enough gradients, the thermo-polarisation effect might lead to a non-negligible ef-
fective Coulomb interaction. This effect could be probed in NEMD simulations and
experiments.

As a starting point, we decided to follow the approach of Bresme and co-workers
in order to confirm their results. Surprisingly, we found that the treatment of the
long-range electrostatic interactions has a strong influence on the resulting field if
the field is calculated as suggested by Bresme and co-workers [1, 3, 8]. In particular,
we could only reproduce their results with the Wolf method [14], but not with the
commonly used Ewald summation technique. In a very recent paper [3], Armstrong
and co-workers claim to have shown that both implementations, Ewald summation
and Wolf summation, produce the same results referring to one of their earlier
papers [8]. However, to the best of our knowledge, they did not present the results
for the electrostatic field obtained with Ewald summation [8]. This is intriguing, as
the authors undermine the validity of the Wolf method for their setup by comparing
various simulation quantities to their Ewald summation counterparts. What is
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more, we found that the heat exchange (HEX) algorithm [15, 16], previously used
to establish the temperature gradient, leads to a considerable loss of energy over
the relevant simulation time scales.

In this work we closely follow the simulation protocol of Armstrong and co-
workers [8] and reproduce some of their results for validation. Subsequently, we
argue that the way they calculated the electrostatic field in several recent pub-
lications is incorrect. This mistake partly explains the strong dependence of the
electrostatic field on the underlying treatment of the electrostatic interactions. We
will show that both methods lead to very similar results if the fields are calculated
consistently. Additionally, we identify the major cause for the energy loss in the
HEX algorithm and suggest an easy fix based on some analytical work. To the
best of our knowledge, neither of these issues has successfully been addressed in
previous work.

1.2 Non-equilibrium thermodynamics

In order to present the basic concepts of non-equilibrium thermodynamics, we will
closely follow de Groot and Mazur [17]. Unless explicitly stated otherwise, all the
derivations shown in the sections §1.2.1–1.2.3 are taken from that source. A full
derivation of equation (1.23) relevant for the later chapters would be beyond the
scope of this work and may be found elsewhere [1, 17].

1.2.1 Entropy production and local equilibrium

As a starting point, we consider the variation of the entropy

dS = diS + deS, (1.1)

where diS arises from the entropy production inside the system and deS is the
contribution to the entropy supplied by the surroundings. The second law of ther-
modynamics may then be written as

diS ≥ 0, (1.2)

where the equality holds for reversible transformations [17]. The aim now is to
relate the internal entropy production, diS, to the irreversible processes of interest
that occur inside the system. The contributions to the entropy in Eqn (1.1) can be
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expressed as

S =

∫

V

ρms dV, (1.3)

dSi

dt
=

∫

V

σ dV, (1.4)

dSe

dt
= −

∫

Ω

Js,tot · dΩ, (1.5)

where Ω is the enclosing surface of the volume V , ρm the mass density, s the entropy
per unit mass, σ the entropy production per unit volume and unit time and Js,tot

the total entropy flow per unit area and unit time [17]. As the equations (1.3)–(1.5)
must hold for an arbitrary volume, it follows from Eqn (1.1) that

∂ρms

∂t
= −∇ · Js,tot + σ, (1.6)

σ ≥ 0. (1.7)

By writing Eqns (1.1)–(1.2) in the form of Eqns (1.6)–(1.7), it is implicitly assumed
that the same macroscopic laws also apply for infinitesimally small parts of the
system. Additionally, it is assumed that the system is in local equilibrium. In
order to explain what this means, let us consider a system whose equilibrium state
can be defined by the specific internal energy u and the specific volume v, i.e.
s = s(u, v). The assumption of local equilibrium then implies that for a small
volume element there exists a local entropy function sl(u, v) which is the same
function as s, although the overall system is not in equilibrium. This is a very
important assumption, as it implies that the entropy variation is still given by

Tds = du+ pdv, (1.8)

T
ds

dt
=

du

dt
+ p

dv

dt
, (1.9)

even though the overall system is out of equilibrium [17]. Equation (1.9) is relevant
for the entropy balance equation, Eqn (1.6), and based on the assumption that
Eqn (1.8) is valid along the centre of gravity motion of a small mass element [17].

1.2.2 Phenomenological equations

From the preceding section, we know that the entropy production σ vanishes when
the system is in thermodynamic equilibrium. The next step is to relate the entropy
production to the independent fluxes and thermodynamic forces. Several phenomen-
ological laws, such as Fick’s law or Fourier’s law, Eqn (1.13), suggest that there
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is a linear relation between the flow and the corresponding thermodynamic force.
Allowing also for cross-effects, we can therefore write

Ji =
∑

k

LikXk, (1.10)

σ =
∑

i

JiXi, (1.11)

where Ji is any Cartesian component of the independent flux and Xi is a compon-
ent of the thermodynamic force [17]. Moreover, the phenomenological coefficients

Lik were introduced and the equations (1.10) are called phenomenological equa-

tions. The phenomenological coefficients satisfy certain conditions based on spatial
symmetry properties (Curie principle) and the time reversal symmetry of the mi-
croscopic equations of motion (Onsager reciprocal relations) [17].

1.2.3 Stationary states

If the state variables are independent of time, the thermodynamic state is called
a stationary state. For a one-component system at constant volume, a stationary
state would, for example, be defined by ∂u

∂t
= 0. For a wide range of phenomena

including thermal conduction, diffusion, chemical reactions and cross-effects, it can
be shown that stationary states minimise the entropy production [17]. One could
therefore in theory quantitatively determine the stationary state by minimising the
entropy production.

For simplicity we will only present the introductory example of Ref. [17] (Chapter

V, §3) in a stepwise manner and show the proof of this assertion for a solid one-
component isotropic system in the absence of viscous phenomena. Let the substance
be contained in a vessel and the temperature at the walls be independent of time
with non-uniform values. The entropy production for this case is given by

σ = Jq · ∇
1

T
, (1.12)

Jq = Lqq∇
1

T
, (1.13)

with Jq being the heat flow, T the temperature and Lqq = λT 2 the corresponding
phenomenological coefficient, where λ denotes the thermal conductivity. For this
proof we will assume that Lqq is constant throughout the system and depends only
on the overall equilibrium temperature [17]. As the system is solid by construction,
we are justified in neglecting the thermal expansion and we can write the energy
equation as

ρm
∂u

∂t
= ρmcv

∂T

∂t
= −∇ · Jq, (1.14)
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with cv being the constant volume specific heat. Considering the total entropy
production P given by

P =

∫

V

σdV =

∫

V

Jq · ∇
1

T
dV =

∫

V

Lqq

(

∇ 1

T

)2

dV, (1.15)

we can then try to solve the variational problem

δP = δ





∫

V

Lqq

(

∇ 1

T

)2

dV



 = 0 (1.16)

in order to minimise the entropy production. Together with Eqn (1.13) and the as-
sumption of a constant temperature at the boundary and constant Lqq, the solution
to this problem is given by [17]

∇ · Jq = 0. (1.17)

From Eqn (1.14) it then follows that

∂u

∂t
= cv

∂T

∂t
= 0, (1.18)

and it can be concluded that the stationary state compatible with the boundary
conditions minimises the entropy production. Under the same assumptions it can
be proven that this state is also stable with respect to local perturbations in T [17].

From this example we learn that if we are able to relate the irreversible phenomenon
of heat conduction to the entropy production σ, it follows from a variational prin-
ciple that the state of minimum entropy production is a stationary state. This state
can be either an equilibrium or a non-equilibrium stationary state depending on
the imposed boundary conditions. Although we have only presented the proof of
this theorem for a simple example, it can be shown in a more general way under
the following assumptions [17]: local equilibrium must hold and the phenomenolo-
gical coefficients are constants. Additionally, the Onsager reciprocal relations have
the form Lik = Lki. Furthermore, the phenomenological equations (1.10) hold, i.e.
the fluxes depend only linearly on the thermodynamic forces. However, even if
not all of the above conditions are satisfied, it is possible to derive a more general
theorem [17].

1.2.4 Thermal polarisation

Using the same theoretical framework, we now consider the reorientation of an
isotropic liquid in the vicinity of a thermal gradient [1]. If the system is polarisable,
the entropy production is given by [1, 17]

σ = − 1

T

∂P

∂t
· (Eeq − E)− 1

T 2
Jq · ∇T, (1.19)
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where P denotes the polarisation, Eeq the equilibrium electrostatic field and E the
electrostatic field [1]. The polarisation is related to the equilibrium field according
to

P = χǫ0Eeq, (1.20)

where χ = ǫr − 1 is the electric susceptibility, ǫr the relative dielectric constant and
ǫ0 the vacuum permittivity. Assuming that the phenomenological equations hold,
the displacement current and the heat flux are given by [1]

∂P

∂t
= −Lpp

T
(Eeq − E)− Lpq

T 2
∇T, (1.21)

Jq = −Lqp

T
(Eeq − E)− Lqq

T 2
∇T. (1.22)

If we write the fluxes in this form, the cross-phenomena become immediately appar-
ent. The temperature gradient affects the displacement current and the electrostatic
field affects the heat flow in turn. The phenomenological constants are again as-
sumed to obey the Onsager reciprocal relations, i.e. Lpq = Lqp. At the stationary
state and in the absence of free charges, i.e. ∂P

∂t
= 0 and P = −ǫ0E, it follows from

Eqn (1.21) that [1]

E =

(

1− 1

ǫr

)

Lpq

Lpp

∇T

T
, (1.23)

which is the central result of this section. According to this equation, the elec-
trostatic field arising from thermal reorientation is proportional to the imposed
temperature gradient.

1.2.5 Some critical comments

The theory established by de Groot and Mazur has been heavily criticised by Jaynes
in Ref. [18]. In particular, Jaynes questions the validity of the assumption that the
phenomenological coefficients are constants. For the example of thermal conduct-
ivity, this assumption implies that λ ∝ T−2, and there is no known substance for
which this scaling holds [18]. What is more, he argues that in the more general
case of heat conduction, diffusion and chemical reactions, the condition of minimum
entropy production simply reduces to the conservation laws, although very restrict-
ive additional assumptions are necessary. Therefore, the necessity of the theory is
questioned altogether. A detailed discussion can be found in Ref. [18].

We note that even without using the Onsager reciprocal relations or the assumption
that the phenomenological coefficients are constants, a more general theorem can
be derived; however, in that case, the state of minimum entropy production does
not necessarily correspond to a stationary state [17]. The system investigated in
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this report is certainly not isotropic, which will be shown in Chapter 4. However, a
theory without the restrictive assumptions and simplifications that were necessary
to derive Eqn (1.23) is yet to be developed.

1.3 Molecular simulations

Computer simulations have become a powerful instrument for studying molecular
systems on a microscopic basis. On the one hand, they complement experiments
by providing valuable experimental parameters. On the other hand, some physical
phenomena, such as crystallisation or chemical reactions, happen on time and length
scales which are difficult to study experimentally. What is more, in many cases
carrying out experiments would be either too dangerous or simply too expensive;
one such example would be high-pressure fluid dynamics experiments. Molecular
dynamics (MD) is a technique that allows us to study the time evolution of a
microscopic system by solving Newton’s equation of motion,

mir̈i = −∇ri
U(rN) = fi, (1.24)

where U(rN) is the many-body potential depending on the positions of all N atoms,
rN = {r1, ..., rN}, ∇ri

denotes the gradient with respect to atom i and fi is the
force acting on atom i. Often U(rN) is a sum of pairwise, spherically symmetric
interactions of the form

U(rN) =
N
∑

i=1

∑

j<i

u(rij), (1.25)

where rij = |rj − ri|. The system is evolved in time by a certain timestep and
a vast amount of information is available. Thus, many thermodynamic quantities
can readily be calculated with little or moderate overhead. However, computational
power is a limiting factor and only comparatively small systems of O(103 − 106)

molecules can be studied at present [19], depending on, for example, the type of
interaction. Although a million molecules is several orders of magnitudes more than
what was possible a few decades ago, we are still far from being able to simulate
realistic system sizes comprising of the order of 1023 particles. Thus, special care
has to be taken in order to avoid finite size effects. Let us consider the three-
dimensional Coulomb potential to illustrate the problem. The potential decays
very slowly as it is proportional to r−1, with r being the distance between two
charged atoms. The integral over the tail of the potential from a cutoff radius to
infinity therefore diverges. Although for certain systems, truncating the long-range
electrostatic interaction might be a reasonable approximation [14], it is not justified
in general.

However, what one can do to reduce finite size effects considerably is to employ
periodic boundary conditions and actually simulate an infinite system. This system
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Figure 1.1: Periodic boundary conditions: a molecule (blue) that leaves the reference
box (black solid line) will enter it again at the same relative position where the original
molecule entered the neighbouring box.

can be thought of as an infinite number of identical copies of a reference box which
are aligned in such a way that they fill up all space. Additionally, the molecules
in different boxes can interact with each other. It is still impossible to simulate an
infinite system of truly independent molecules, but we are capable of simulating an
infinite system of periodically repeated units. The entire system can be constructed
from the knowledge of one box, i.e. the reference box, and it suffices to keep
track of the molecules in that box only. Once a molecule leaves the reference
box, it enters a neighbouring box, as illustrated in Fig. 1.1. At the same time
a periodic copy of this molecule will enter the reference box at the same relative
position where the original molecule entered the neighbouring box. All this can be
incorporated by two modifications: when calculating distances between molecules,
say i and j, we take the closest distance between i and any image of j (minimum

image convention). Additionally, the long-range potential contribution requires
modification, as it should also take into account all the interactions within the
infinite, periodic system.

1.3.1 Non-equilibrium molecular dynamics

Commonly, MD is used to study systems that are in equilibrium. If the system is
Hamiltonian with no explicit time dependence, it is straightforward to carry out
microcanonical, or NVE, simulations, as the system evolves on a constant energy
surface in phase space. However, it is also possible to use a thermostat to adjust the
temperature in a MD simulation. A Nosé–Hoover thermostat [20, 21], for example,
can be coupled to the equations of motion in such a way that the resulting trajectory
samples the canonical distribution. This particular case would correspond to an
NVT simulation, but other ensembles are also possible.

In contrast to equilibrium MD, the system can be far from equilibrium in a non-
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equilibrium MD simulation. For instance, this would be the case when an external
force couples to the system and causes strong dissipative fluxes and transport phe-
nomena. Such a scenario can be studied with NEMD simulations and one usually
forces the system to remain in a non-equilibrium stationary state [22].

Let us further illustrate the difference between equilibrium MD and NEMD using
the calculation of the thermal conductivity as an example. For simplicity, we assume
that the centre of mass velocity of our system is zero. We can calculate the thermal
conductivity λ with either method, but the approaches are completely different.
For the MD case, it is straightforward to employ the Green–Kubo relation [23],

λ =
V

kBT 2

∞
∫

0

dτ 〈Jq,α(τ)Jq,α(0)〉 , (1.26)

Jq =
1

V

N
∑

i=1



vi





miv
2
i

2
+

1

2

∑

j ( 6=i)

uij



− 1

2

∑

j ( 6=i)

rij (vi · fij)



 , (1.27)

where kB is Boltzmann’s constant, T the temperature, V the volume, uij = u(rij),
fi the force acting on atom i and fij = fj − fi. The quantity Jq,α denotes the
α component of Jq, α ∈ {x, y, z}, and defines the heat flux through the surface
perpendicular to α averaged over the volume V containing the N particles in the
summation. The notation

∑

j ( 6=i) refers to a single summation over j, where the
term corresponding to j = i is skipped. (By contrast,

∑

j 6=i is a double summation
without the term corresponding to i = j.) Equation (1.26) relates the thermal
conductivity to the integral over a time autocorrelation function (ACF). In an
equilibrium simulation of length τ0, the time ACF of a dynamical quantity C(t)

can be estimated as [24]

〈C(τ)C(0)〉 ≈ 1

τ0

τ0
∫

0

dt C(t+ τ)C(t). (1.28)

It is important to note that with the help of Eqn (1.26), it is possible to estimate
the reaction of the system to an external perturbation–in this case a temperature
gradient along the coordinate α–just by analysing equilibrium properties.

An alternative approach would be to measure the thermal conductivity directly in
a NEMD simulation by actually establishing a temperature gradient [23]. Let us
assume that the gradient along the coordinate α arises due to an external field A
that couples to the equations of motion in such a way that the dissipation can be
written as

dE

dt
= V Jq,αA. (1.29)
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The thermal conductivity can then be directly calculated with

λ =
1

T
lim
A→0

lim
t→∞

〈Jq,α(t)〉
A . (1.30)

This expression should give exactly the same result as Eqn (1.26). However, the
key difference really is that in the latter approach, we do actually simulate a tem-
perature gradient, whereas the former only requires an equilibrium simulation in
the absence of a gradient.

Heat conduction is one of many examples where NEMD has proved to be a powerful
technique. The method was also successfully applied to studies of shear-flow in
liquids [22], shock-wave propagation in solids [25] and very recently to studies of
thermal polarisation effects in liquid water [1].

1.4 Outline

The remainder of this thesis is organised as follows. The governing equations of mo-
tion are discussed in Chapter 2. We first explain how the short-range interactions
are modelled and then we present two summation techniques for the treatment of
long-range interactions. We begin Chapter 3 with the derivation of an algorithm
which is often used in NEMD simulations for imposing a stationary temperature
gradient onto the system. Based on simple test cases, we identify a major drawback
of this method and suggest a novel algorithm. In Chapter 4, we first depict the
simulation setup and afterwards we discuss the calculation of the electrostatic field.
Finally, the results are presented followed by a critical discussion. A summary of
the relevant findings is given in Chapter 5, where we also suggest possible improve-
ments for future work. Some of the derivations are discussed in more detail in the
Appendices A–C.
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Chapter 2

Governing equations of motion

In the previous chapter, we briefly introduced the tools and theoretical framework
we will need in order to study the thermo-polarisation effect in water. This chapter
deals in some detail with the two different types of interaction relevant to many
common water models. Let us assume that Nm water molecules are contained in a
rectangular box defined by

Ω =
∏

α∈{x,y,z}

[

−Lα

2
,
Lα

2

]

, (2.1)

where Lα is the box length along the coordinate α and the box of volume V = |Ω| is
centred about the origin. Anticipating the detailed description of the water model
in §4.1.1, let the molecules be rigid and each consist of n = N/Nm = 3 sites. These
interact with the sites of other molecules through two types of interaction. Short-
range interactions only consider neighbours within a certain cutoff distance, for
example a spherical region with cutoff radius rsr. The second type is long-range
electrostatic interaction, which requires special treatment, as mentioned above. The
interaction potential can be split up into two contributions according to

U(rN) = U sr(rN) + U lr(rN), (2.2)

where the superscripts indicate ‘short-range’ and ‘long-range’, respectively.

2.1 Short-range interaction

The interaction between uncharged atoms separated by distance r is often described
by the Lennard-Jones potential,

ulj(r) = 4ǫ

[

(σ

r

)12

−
(σ

r

)6
]

. (2.3)

13
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At large distances, r ≫ σ, this potential models the van-der-Waals–London disper-
sion forces, whereas at short distances, r < σ, it models the strong repulsion due to
the Pauli exclusion principle. The energy ǫ is the well depth of the potential and σ

is the effective atomic diameter. The potential decays rapidly and at a distance of
2.5σ its value is only about 1/60th of the well depth [24]. Typically the simulation
box is much larger than a sphere with a similar radius. However, simply truncating
the potential can have significant effects [24] even if the tail only contributes little
to the potential energy. What one could do is limit the interaction to a sphere
with radius rsr ∈ [2.5σ,minα(Lα/2)] and correct for ignoring the tail contribution
of the potential. An alternative approach would be to truncate and shift the po-
tential instead, such that it is continuous. The truncated and shifted counterpart
of Eqn (2.3) is given by [24]

ũlj(r) =

{

ulj(r)− ulj(rsr) if r ≤ rsr,

0 otherwise.
(2.4)

Additional correction terms for the virial and the total energy, which arise from
this modification, should be taken into account as well. For the energy conservation
studies in Chapter 3, we used the truncated and shifted potential given by Eqn (2.4).
For all water simulations in Chapter 4, we used the unshifted potential given by
Eqn (2.3) with a spherical cutoff and standard correction terms as described in
Ref. [24].

2.2 Long-range interaction

In addition to the short-range interaction we need to take into account the Coulomb
interactions of all particles in the box with all other particles in all periodic images.
This ambitious task can be achieved by a technique called Ewald summation [26].
Since this method is computationally expensive, several alternatives have recently
been proposed [14, 27]. With regard to previous work on the thermo-polarisation
effect and a comparison to literature data [3, 8], we are particularly interested in
the Wolf summation method [14].

Much of the complexity of the problem lies in finding a generalised Green’s function
for the underlying geometry and boundary conditions. Once the Green’s function
G for the particular problem is known, the long-range contribution to the potential
energy can be calculated according to [28]

U lr(rN) =
1

2

∑

j 6=l

∑

A,B

qjAqlBG(rjAlB) +
1

2

∑

j

∑

A 6=B

qjAqjB

[

G(rjAjB)−
1

rjAjB

]

+
1

2

∑

j

∑

A

q2jA lim
r→0

[

G(r)− 1

r

]

, (2.5)
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where rjA is the position vector of the site A ∈ {1, ..., n} on molecule j ∈ {1, ..., Nm},
qjA the charge of that site and rjAlB = rlB − rjA. Therefore, we will first show how
one can calculate the three-dimensional generalised Green’s function for Ewald
summation, GE, starting from Poisson’s equation. Subsequently, we present the
corresponding Green’s function for Wolf summation, GW, and briefly comment on
the differences.

2.2.1 Ewald summation

In this section, we follow Ref. [28] unless explicitly stated otherwise. Before we
start with the derivation of GE, let us first recall Poisson’s law in Gaussian units,

∇2Φ(r) = −4πρq(r), (2.6)

where Φ denotes the electrostatic potential and ρq the charge density. If we write

Φ(r) =

∫

d3r′
ρq(r

′)

|r− r′| =
∫

d3r′GR3(r− r′)ρq(r
′), (2.7)

with the Green’s function

GR3(r) =
1

r
, (2.8)

then it follows from Eqn (2.6) that

∇2GR3(r) = −4πδ(r), (2.9)

where δ(r) is the three-dimensional Dirac delta function. Note that the integration
is carried out over R

3 and thus there are no boundary effects. In the simulation,
however, we use periodic boundary conditions and we need to reformulate Eqn (2.9)
to account for that. In particular, we are looking for a Green’s function G that
satisfies [28]

i) ∇2G(r) = −4π

[

δ(r)− 1

V

]

, (2.10)

ii) G(r) is periodic with G̃(0) = 0, (2.11)

where G̃ denotes the Fourier transform of G. The condition G̃(0) = 0 is required for
uniqueness and also leads to the additional term 4π/V on the RHS of Eqn (2.10). By
Fourier transforming Eqn (2.10), one can easily verify that this condition is satisfied.
Sometimes this term is also referred to as a neutralising background charge [29].
As the periodicity of G is naturally incorporated in its Fourier transform, it is
advantageous to formulate the problem in k-space. The solution of Eqns (2.10)–
(2.11) is then formally given by

G(r) =
1

V

∑

k 6=0

4π

k2
eik·r, (2.12)
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where the sum includes all k-vectors compatible with Ω except for k = 0. The sum
in Eqn (2.12) is only conditionally convergent. We therefore introduce a convergence
or damping factor η and change the order of summation by splitting the expression
into

G(r) = GI(r) +GII(r), (2.13)

GI(r) =
1

V

∑

k 6=0

4π

k2

[

1− e−
k2

4η2

]

eik·r, (2.14)

GII(r) =
1

V

∑

k 6=0

4π

k2
e−

k2

4η2 eik·r. (2.15)

An important role of η is to weight the contributions of GI and GII. The expression
of GI can be further simplified by noticing that it only differs from the Fourier
transform of erfc(ηr)/r over R

3 for k = 0. Correcting for the missing term k = 0

by −π(η2V )
−1, one can show that the Fourier transform of

G(r) =
∑

n

erfc(η|r+ nL|)
|r+ nL| − π

η2V
+

1

V

∑

k 6=0

4π

k2
e−

k2

4η2 eik·r, (2.16)

is indeed given by Eqn (2.13), where n is a shift vector between a molecule and its
periodic image and the summation runs over all periodic images [28]. Choosing η

carefully, one can achieve that the first term converges fast and the contributions
for n 6= 0 are small. If we ignore these terms, Eqn (2.16) finally reduces to

GE(r) =
erfc(ηr)

r
− π

η2V
+

1

V

∑

k 6=0

4π

k2
e−

k2

4η2 eik·r. (2.17)

As demonstrated in Appendix A, inserting this expression back into Eqn (2.5)
yields the standard Ewald summation expression as presented in textbooks, e.g. in
Ref. [24]. For performance reasons, one chooses a real space cutoff, rc, for the first
term in Eqn (2.17) and a k-space cutoff, kc, for the last term. Nevertheless, the
evaluation of the energy still remains expensive. With an optimal choice of η, rc and
kc a scaling of O(N3/2) can be achieved [24]. However, there are extensions to Ewald
summation, such as Particle Mesh Ewald, that evaluate the k-space contribution
efficiently using a fast Fourier transformation and scale as O(N logN) [30].

2.2.2 Wolf summation

Recently, Wolf and co-workers showed that in a condensed ionic system the net
Coulomb potential is effectively short-ranged [14]. Based on this insight, they
devised a novel summation method that avoids the expensive k -space term in
Eqn (2.16). Instead, the potential is shifted in such a way that charge neutral-
ity is enforced [27]. Comparison with other methods reveals that this technique



2.3. NUMERICAL INTEGRATION 17

performs well [8, 27]. For a full derivation and detailed discussion of the Wolf
method, we refer to Ref. [14]. Here, we will only present the Green’s function
which, when inserted into Eqn (2.5), gives the final result for the energy of a charge
neutral system (Eqn (5.13) in Ref. [14]). It can be easily verified (see Appendix A)
that the corresponding Green’s function is given by [28]

GW(r) =

{

erfc(ζr)
r

− erfc(ζrc)
rc

if r ≤ rc,

0 otherwise,
(2.18)

where rc is again a cutoff radius and ζ a damping parameter. It is obvious from
the functional form of GW that the function is continuous at the cutoff distance.
We can also note that the first term in GW is identical to the one in GE, although
the optimal choice of the damping parameter is not necessarily the same. In sharp
contrast to standard Ewald summation, the Wolf method can achieve linear, i.e.
O(N), scaling [27].

2.3 Numerical integration

The dynamics of the system are governed by Eqn (1.24), which we can discretise to
evolve all coordinates in time by a fixed timestep ∆t. The velocity Verlet algorithm,
given by

v
n+ 1

2

i = vn
i +

∆t

2mi

fni , (2.19)

rn+1
i = rni +∆tv

n+ 1

2

i , (2.20)

vn+1
i = v

n+ 1

2

i +
∆t

2mi

fn+1
i , (2.21)

is a simple but good choice for solving the equations of motion, because it ex-
hibits only little long-term energy drift [24]. Carrying out the update procedure
(Eqn (2.19)–(2.21)) evolves the coordinates and velocities, rni and vn

i , from time
tn = n∆t to a time tn+1 = tn+∆t. We will use this notation throughout the report
and sometimes refer to the time tn simply as time n. Since a typical trajectory of
interest contains more than 106 steps, long-term energy conservation is a desirable
feature. The same update procedure is applied to each site on any molecule indi-
vidually. Therefore, there is no connectivity between the sites of a rigid molecule
unless we explicitly impose one. If we fail to do so, the molecule would be strongly
distorted even after only a few timesteps. A very elegant way of freezing certain
degrees of freedom is using constraining forces with Lagrange multipliers. Just fo-
cussing on a single water molecule and employing this method, one can reformulate
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the equations of motion as [31]

mir̈i = fi −
∑

α

λα
∂σα

∂ri
= fi + gi, (2.22)

where i ∈ {1, 2, 3} is the index running over the sites of the reference molecule.
The additional force term gi consists of Lagrange multipliers, λα, and holonomic
constraints of the form

σα(rj) ≡ 0 ∀ α ∈ {12, 13, 23}, (2.23)

σ12 =
1

2

[

(r2 − r1)
2 − d212)

]

, (2.24)

σ23 =
1

2

[

(r3 − r2)
2 − d223)

]

, (2.25)

σ13 =
1

2

[

(r3 − r1)
2 − d213)

]

, (2.26)

where dα is the oxygen-hydrogen or hydrogen-hydrogen distance we want to impose.
Next, we need to determine the Lagrange multipliers in order to solve Eqn (2.22).
Let us assume that the distance between sites 1 and 2 should be correct after
updating the coordinates with the velocity Verlet algorithm at time n + 1. Using
Eqns (2.20), (2.22) and (2.24), this condition can be formulated as

(

r212
)n+1

=

[

r̄n+1
12 − ∆t2

2

(

1

m2

+
1

m1

)

λ12r
n
12 (2.27)

+
∆t2

2m2

λ23r
n
23 −

∆t2

2m1

λ13r
n
13

]2
!
= d212,

with

r̄n+1
i = rni +∆tvn

i +
∆t2

2mi

fni , (2.28)

rn+1
i = r̄n+1

i − ∆t2

2mi

∑

α

λα
∂σα

∂ri
, (2.29)

where r̄n+1
i is the updated (uncorrected) position the site i would take if it was

simply integrated with Eqn (2.20). Equation (2.27) imposes one condition on the
three Lagrange multipliers and proceeding analogously for d23 and d13 leads to a
quadratic system of equations in λα, which can be solved with an arbitrary method
of choice, e.g. iteratively.

This procedure describes how rigidity is imposed in LAMMPS, the parallel simula-
tion package we used for all our simulations [32]. Although there are similarities, we
note that this is neither the original SHAKE algorithm [33] for Verlet integration
nor the RATTLE algorithm [31] for velocity Verlet integration. We discuss some
issues involved with the LAMMPS implementation in §4.3.5.



Chapter 3

Thermal gradient

In an equilibrium simulation, the average temperature distribution should be ho-
mogeneous. However, we are interested in the physical behaviour of a system that
remains in a non-equilibrium stationary state. NEMD is a useful tool for studying
the underlying physics. With this method, a temperature gradient can be imposed,
which is independent of time after an initial transient period, i.e. ∂T (t,z)

∂t
= 0 for

t ≥ t0. In the past, many algorithms have been developed for this purpose [15, 34–
37]. In previous investigations on the thermo-polarisation effect, the algorithm of
Ikeshoji and Hafskjold [15] proved to be particularly useful [1]. We explain this
algorithm in detail in §3.1.

Furthermore, we want to clearly distinguish between the method employed to create
the gradient itself and the combination of this method with the underlying integ-
ration algorithm. Ikeshoji and Hafskjold originally used the Leap-Frog algorithm
for integrating the equations of motion in Ref. [15]. In Ref. [16], the method of
Ikeshoji and Hafskjold was called the heat exchange (HEX) algorithm; however,
the original algorithm was combined with velocity Verlet time integration. In this
report, we will call the method for establishing the gradient the Ikeshoji and Haf-
skjold algorithm. We understand the HEX algorithm to be the combination of
velocity Verlet integration and the Ikeshoji and Hafskjold algorithm.

In this chapter, we first introduce the HEX algorithm in §3.1.1. Then, it is demon-
strated that the algorithm does not conserve the total energy in §3.1.2. We analyse
the integration scheme in §3.2.1 by considering the limit ∆t → 0, which is called
modified equation analysis. Based on that analysis, we identify the major cause
of the energy conservation problem and propose an improved algorithm in §3.2.2.
Finally, we demonstrate that the new algorithm conserves the energy very well for
simulation times of interest in §3.2.3.

19
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Γ1 Γ2

Ω
vΩ

vΓ1
vΓ2

Figure 3.1: Illustration of the simulation box, Ω, with a red shaded hot region, Γ1, and a
blue shaded cold region, Γ2. The centre of mass velocities are vΩ, vΓ1

and vΓ2
, respectively.

Atoms are represented by red/blue circles, if they are contained in the hot/cold region
and by empty circles otherwise.

3.1 Heat exchange algorithm

The original formulation of the Ikeshoji and Hafskjold algorithm has been simplified
and presented in a cleaner way [38]. In what follows, the reformulated version is
considered, but using a different notation. The algorithm has previously been
integrated into LAMMPS exactly as presented in Ref. [38]. Throughout the report
we will use two different versions of LAMMPS: the original version 1Feb14 and a
slightly modified version 1Feb14/mod, which contains the new algorithm proposed
in §3.2.2.

3.1.1 Formulation

Suppose we want to add a heat amount ∆Q to a region Γ ⊂ Ω. For example, this
could be either the region Γ1 or Γ2 in Fig. 3.1. We also assume that the algorithm
is to be applied sequentially to different, disjoint regions. Let us define the index
set γ = {j | rj ∈ Γ}, where ri denotes the position vector of atom i. Furthermore,
let vi be the velocity of that atom and vΓ and vΩ the centre of mass velocities of
the region Γ and the box Ω, respectively.

The basic idea of the algorithm is to scale all the velocities in Γ by the same factor η
and shift them by a constant, such that vΓ is unaffected and the non-translational
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kinetic energy of region Γ changes by ∆Q. To formulate this idea in an equation,
we first define what we mean by non-translational kinetic energy. The total kinetic
energy contained in the region Γ, KΓ, is given by

KΓ =
∑

i∈γ

miv
2
i

2
, (3.1)

and it can be further split into translational and non-translational contributions,

KΓ = Kt
Γ +Knt

Γ . (3.2)

The translational kinetic energy, Kt
Γ, is calculated as

Kt
Γ =

mΓv
2
Γ

2
, where (3.3)

vΓ =
1

mΓ

∑

i∈γ
mivi, (3.4)

and where mΓ is the total mass contained in region Γ. The non-translational kinetic
energy, Knt

Γ , is then simply defined as

Knt
Γ = KΓ −Kt

Γ. (3.5)

If an updated quantity has an overbar in addition to the standard symbol, the
application of the algorithm should satisfy

K̄nt
Γ = Knt

Γ +∆Q = η Knt
Γ , (3.6)

which implicitly defines the scaling factor η. Solving Eqn (3.6) for η gives

η =
Knt

Γ +∆Q

Knt
Γ

. (3.7)

With the definition ξ =
√
η it can easily be shown (see Appendix B) that the update

step

vi 7→ v̄i = ξvi + (1− ξ)vΓ ∀i ∈ γ, (3.8)

satisfies Eqn (3.6) and conserves the centre of mass velocity of Γ, namely

v̄Γ = vΓ. (3.9)

If this procedure is applied to regions Γ1 and Γ2 in Fig. 3.1 such that ∆Q is taken
from Γ2 and added to Γ1, the total energy in the system as well as vΩ should be
unaffected. The velocity Verlet integration scheme together with Eqn (3.8) define
the HEX algorithm. The full set of equations is summarised in §3.2.1.
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3.1.2 Energy conservation

Intrigued by the observation of a slight energy drift in a simulation of rigid water,
we decided to investigate this problem further using a much simpler system and
this algorithm. To illustrate the energy conservation problem, we performed NEMD
simulations of various different temperature gradients along the z-axis in a Lennard-
Jones system comprising 1728 particles. Reduced units (see Appendix B) apply to
all results presented in this chapter. The individual quantities should therefore
be labelled separately, e.g. with an asterisk (∗). However, we drop this label for
readability. The rectangular box is defined by the dimensions Lx = Ly = Lz/2.
The full input script and input parameters for a typical simulation are given in the
Appendix B.

We performed two sets of simulations for a similar but not identical setup as de-
picted in Fig. 3.1. In particular, the centres of the two reservoirs are separated
by a distance Lz/2 and the hot reservoir is aligned with z = 0. The same binary
restart file was used for all gradient simulations in order to guarantee identical
initial conditions. First, we simulated the same kinetic energy gradient using vari-
ous timesteps ∆t (see Fig. 3.2). We then simulated different gradients for a fixed
timestep (see Fig. 3.3). This can be achieved by adjusting the heat production rate,

κ =
∆Q

∆t
≥ 0, (3.10)

which defines the heat ∆Q = κ∆t being added to the hot reservoir and ∆Q being
removed from the cold reservoir during every timestep. Periodicity and the fact
that the two regions are separated exactly by Lz/2 require half the heat supplied to
the hot reservoir to dissipate to each neighbouring cold reservoir (periodic boundary
conditions). The resulting heat fluxes are therefore given by

Jq = ± κ

2LxLy

ez, (3.11)

where ez is the unit vector in z-direction. We note that the energies were well
conserved in an NVE simulation at the highest average kinetic energy of 4.5 (see
Fig. 3.2) using the largest timestep of ∆t = 0.0012 (black symbols in Fig. 3.4).
This suggests that the loss in energy cannot simply be attributed to the choice of
an unstable timestep.

In Fig. 3.2, we can see that the gradient remains unaffected by the choice of timestep
for the timestep range considered. All simulations exhibit a fairly linear kinetic
energy profile between the reservoirs. The maximum and minimum kinetic ener-
gies are obtained at the centres of the reservoirs, respectively. On the other hand,
changing κ for a fixed timestep leads to different kinetic energy gradients, as demon-
strated in Fig. 3.3. However, most importantly, in both cases the total energy per
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Figure 3.2: Kinetic energy profile along the z-axis for a fixed value of κ = 300 at varying
timesteps ∆t. The results were obtained using the original HEX algorithm as implemented
in LAMMPS (1Feb14). The dashed line represents the average kinetic energy per particle.

particle decreases as a function of time, as illustrated in Figs 3.4–3.5, respectively.
Plotting the loss of energy per particle at the final time t = 1000 as a function of
the timestep (Fig. 3.6) and κ (Fig. 3.7), respectively, one can clearly see a quadratic
dependence on both quantities. This observation is crucial for identifying the cause
of the observed energy drift.

3.2 Conservative heat exchange algorithm

From the results presented in the previous section, we know that the energy loss
scales with ∆t2. We are therefore particularly interested in identifying which terms
in the integration scheme scale in this way. Moreover, it is important for under-
standing the HEX algorithm to know which modified equation is actually being
integrated.

3.2.1 Modified equation analysis

The standard integration scheme in LAMMPS is the velocity Verlet algorithm.
Evolving the momenta and coordinates in time according to Eqns (2.19)–(2.21)
satisfies Newton’s law, i.e. r̈i(t) = v̇i(t) = fi(t)/mi, up to terms of O(∆t2). The
HEX algorithm requires an additional velocity update step and the integration
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Figure 3.3: Kinetic energy profile along the z-axis for various values of κ at a fixed
timestep ∆t = 0.001. The results were obtained using the original HEX algorithm as
implemented in LAMMPS (1Feb14). The dashed line represents the average kinetic energy
per particle.
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Figure 3.4: Energy loss per particle as a function of time for various timesteps and a fixed
κ = 300. The results were obtained using the original HEX algorithm as implemented in
LAMMPS (1Feb14). For comparison, we also added the results of an NVE simulation at
the highest kinetic energy, K(zmax)/N = 4.5, and the largest timestep ∆t = 0.0012.
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Figure 3.5: Energy loss per particle as a function of time for various values of κ and a
fixed timestep ∆t = 0.001. The results were obtained using the original HEX algorithm as
implemented in LAMMPS (1Feb14). The dashed horizontal line is added for comparison.
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Figure 3.6: Energy loss per particle at time t = 1000 as a function of ∆t for a fixed
κ = 300. The results were obtained using the original HEX algorithm as implemented in
LAMMPS (1Feb14).
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Figure 3.7: Energy loss per particle at time t = 1000 as a function of κ for a fixed
∆t = 0.001. The results were obtained using the original HEX algorithm as implemented
in LAMMPS (1Feb14).

scheme may be written as
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where gi is a constraining force for rigid molecules and gi ≡ 0 applies to atomistic
systems. The forces need only be calculated once per timestep and the same scaling
factor ξn+1 applies to all velocities in Γ. Next, we consider the discrete velocities
v̄n
i and v̄n+1

i in the limit ∆t → 0. It is straightforward to show that the velocity
satisfies the modified equation

v̄i(t) = ξ(t)vi(t) + [1− ξ(t)]vΓ(t), (3.17)

˙̄vi(t) =
d

dt
[ξ(t)vi(t) + (1− ξ)vΓ(t)] =:

f̄i(t)

mi

, (3.18)

which defines the modified force f̄i(t). Strictly speaking, ξ is also a piece-wise con-
stant function of rj, but we ignore the discontinuities for simplicity. The modified
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force satisfies limξ→1 f̄i(t) = fi(t), as one would expect since applying Eqn (3.17)
with ξ = 1 is the identity operation. From Eqns (3.12)–(3.16), it can easily be seen
that the coordinates rn+1

i are not affected by the rescaling step, given by Eqn (3.16),
at time n. With other words, the coordinates do not feel the acceleration

1

mi

[

f̄i − fi
]

(t) =
d

dt
[ξvi + (1− ξ)vΓ] (t)− v̇i(t) (3.19)

=
d

dt
[(ξ − 1)(vi − vΓ)] (t), (3.20)

acting on the particles in the time interval [tn, tn+1] in order for the velocities to
satisfy Eqn (3.16).

3.2.2 Formulation

Having noticed that the coordinates are ‘lagging behind’, the fix is actually trivial.
Consider the Taylor expansion

ri(t+ 1)− ri(t)

∆t
= vi(t) +

∆t

2mi

fi(t) +
∆t2

6mi

ḟi(t) +O(∆t3). (3.21)

The update step given by Eqn (3.13) already takes into account the first two terms
in Eqn (3.21). However, the change of the force within the time interval [tn, tn+1]

caused by scaling and shifting the velocities requires a consideration of the third
term as well. We can approximate the time integral of that term by

∆t2

6mi

∫ t+∆t

t

dt ḟi(t) ≈
∆t2

6

d

dt

(

(ξ − 1)(vi − vΓ)

)

(t), (3.22)

and subsequently correct the coordinates in an additional update step. This up-
date step will move the particles in such a way that they are up-to-date with the
velocities at the end of the timestep, whilst leaving the velocities unaffected. Based
on this insight, we propose the cHEX (conservative HEX) algorithm given by
Eqns (3.23)–(3.30).
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(3.29)

f̄n+1
i =

{

fn+1
i + gi(r̄

n+1
j ) if i ∈ γn+1,

fn+1
i otherwise.

(3.30)

There are a few differences compared to the HEX algorithm, the most important
of which is the additional coordinate integration step (Eqn (3.29)). For rigid mo-
lecules, this step requires calculating additional constraining forces, as stated in
Eqn (3.30). There is a very important detail we would like to point out: the co-
ordinate integration (Eqn (3.29)) is carried out with the constraining forces from
Eqn (3.25). Therefore, this update step will not preserve the geometry exactly.
However, the constraints will be satisfied again after the subsequent integration
step (Eqn (3.24)). Therefore, it is important that any sampling occurs after the
coordinate integration given by Eqn (3.24). However, even after the second coordin-
ate integration (Eqn (3.29)), the geometry of water, for example, remains preserved
up to a precision of 10−4 for a timestep of 1 fs. Depending on the desired tolerance,
it might not even be necessary to update the constraining force at all (Eqn (3.30)).

What is more, each atom i now has an individual ξi assigned to it, because this is
required in order to approximate the time derivative of ξ in the coordinate integra-
tion (Eqn (3.29)). With regard to parallel efficiency, this is a slight drawback, as it
requires additional communication every time the mapping of atoms to processors
changes. However, this does not necessarily happen in every timestep. Therefore,
it adds only little overhead to the basic communication that is necessary in any
case in order to calculate vΓ, mΓ and Knt

Γ .
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Figure 3.8: Kinetic energy profile along the z-axis for a fixed value of κ = 300 at
varying timesteps ∆t. The results represented by symbols were obtained using the cHEX
algorithm in LAMMPS (1Feb14/mod). The ∆t = 0.0012 result for the HEX algorithm
(red solid line) is also shown for comparison.

It should also be mentioned that although the velocities and coordinates are in-
tegrated in every timestep, LAMMPS does allow heat to be added at an arbitrary
frequency. With other words, the integration steps given by Eqns (3.27)–(3.30)
do not necessarily have to be carried out in every timestep. Reformulating the
equations to take this into account is straightforward. Finally, we note that for
particles outside the region Γ, the update steps given by Eqns (3.27)–(3.30) are
simply identity operations and the combined scheme reduces to velocity Verlet.

3.2.3 Energy conservation

In order to analyse the energy conservation properties of the cHEX algorithm, we
reran all previous LJ simulations with LAMMPS (1Feb14/mod), which uses the
new cHEX algorithm instead of the built-in HEX algorithm. All HEX and cHEX
gradient simulations were started from the same binary restart file. The spatial
kinetic energy profiles are presented in Fig. 3.8 and Fig. 3.9, respectively. As can
be seen, there is no substantial difference and the new curves are overlapping with
the old ones. When it comes to the error in energy, however, the improvement
becomes immediately apparent. As compared to the original algorithm, there is
no noticeable energy drift any more after 106 timesteps. This clearly demonstrates
that we were able to identify and resolve the underlying problem.
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Figure 3.9: Kinetic energy profile along the z-axis for various values of κ at a fixed
timestep ∆t = 0.001. The solid curves represent the results for the cHEX algorithm
(LAMMPS (1Feb14/mod)) and the symbols the old results for the HEX algorithm.
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Figure 3.10: Energy loss per particle as a function of time for various timesteps and
a fixed κ = 300. The results were obtained using the cHEX algorithm (LAMMPS
(1Feb14/mod)). For comparison, we also show the result for κ = 300 and ∆t = 0.0012

obtained with the HEX algorithm.



Chapter 4

Thermal polarisation in water

In the preceding chapters, we introduced the tools and algorithms which can be
utilised to study the thermo-polarisation effect in water. Earlier, Bresme and
co-workers expended considerable effort investigating the electrostatic field which
arises due to molecular reorientation [1, 3, 6, 8]. Wolf summation was used for
the treatment of electrostatic interactions in their work. Bresme and co-workers
argue that Ewald summation leads to artificial effects which are caused by the in-
teraction of the dipoles in the simulation box and their replicas [1]. However, it
had previously been shown that several simulation quantities obtained with the
Wolf method compare well to their Ewald summation counterparts [8, 14], and we
therefore find it surprising that the electrostatic field should be affected by the
underlying summation technique to such an extent. To the best of our knowledge,
the thermo-polarisation effect has not been reported in simulations with Ewald
summation yet. Since Ewald summation is a widely used technique, we therefore
decided to follow the simulation protocol in Ref. [8] and carry out a comparison of
the electrostatic field for both summation techniques.

We begin this central chapter of the current investigation by explaining in detail
the simulation setup and the simulation protocol in §4.1–4.2. Subsequently, some
results are compared to the ones obtained with an in-house code and to the lit-
erature data in §4.3, which confirms that our LAMMPS input scripts are correct.
Based on the theoretical work of Neumann [28], we then discuss the calculation of
the electrostatic field for a system with periodic boundary conditions in §4.4. All
simulation results are presented in §4.5 and our main findings are discussed in §4.6.

31
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mO mH dOH θ qH qO ǫ σ

15.9994 1.00794 1.0 109.47 0.4238 −0.8476 0.1553 3.166

Table 4.1: Parameters for the SPC/E model. The following units apply: [mx] = u,
[dx] = [σ] = Å, [θ] = deg and [ǫ] = kcal/mol. The charge is specified with respect to the
charge of a proton and u stands for atomic mass unit.

4.1 Simulation setup

For water is such an important substance, many models have been devised to invest-
igate its properties. Some of these compare well to the experimental data. However,
no single model outperforms all others across the board [39, 40]. For instance, the
phase diagram of the TIP4P/2005 model compares qualitatively well to that of ac-
tual water [41]. However, the recently proposed coarse-grained, monatomic model
(mW model) reproduces the melting temperature better than any other current
model despite neglecting electrostatic interactions [40]. In turn, the mW model suf-
fers from an unrealistically high mobility due to the reduced degrees of freedom [40].
Therefore, it becomes necessary to focus on specific aspects and choose the water
model accordingly.

4.1.1 The SPC/E model

We used the extended simple point charge (SPC/E) model for the current invest-
igation [42]. This choice is based on several considerations. Firstly, the results
should be comparable to the literature data in order to verify the reported thermo-
polarisation effect in water [8]. The SPC/E model reproduces the dielectric con-
stant of water at ambient conditions quite well (ǫSPC/E = 68 vs. ǫexp = 78.5) [39].
Moreover, the Kirkwood g-factor shows the correct temperature dependence in the
temperature range of interest [43].

O

HH

dOH

dHH

θ

qHqH

qO

Figure 4.1: Schematic repres-
entation of the SPC/E model.

A schematic representation of the SPC/E model
is shown in Fig. 4.1. The model has three sites
and the oxygen atom acts as a Lennard-Jones
centre. There is no hydrogen-hydrogen or oxygen-
hydrogen short-range interaction, but all three
sites carry partial charges and exhibit Coulomb
interactions. All the relevant parameters are sum-
marised in Tab. 4.1.
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Figure 4.2: Projection of the simulation box onto the zy-plane. The box contains a hot
reservoir (red region) and a cold reservoir (blue region).

4.1.2 Box setup

The general box layout was taken to be the same as in Ref. [8], but the systems con-
sidered in the current investigation comprise 4116 rather than 4500 molecules. The
rectangular box illustrated in Fig. 4.2 is defined by Eqn (2.1) with the dimensions
Lx = Ly ≈ Lz/3. The exact values are given in Tab. 4.2. We remark that in Fig. 1
of Ref. [8], the hot reservoir aligns with z = 0, whereas our box is centred around
the origin. Obviously, this should not have any effect on the results, because peri-
odic boundary conditions are employed and the potential energy only depends on
the separation vector between the individual atom pairs. The reservoirs are defined
by the sets

Γ1 =

[

−Lx

2
,
Lx

2

]

×
[

−Ly

2
,
Ly

2

]

×
[

−Lz

2
,−Lz

2
+ δ

]

, (4.1)

Γ2 =

[

−Lx

2
,
Lx

2

]

×
[

−Ly

2
,
Ly

2

]

×
[

0, δ

]

, (4.2)

where δ is the extent of the reservoir in z-direction. The centres of the reservoirs,
(−Lz + δ)/2 and δ/2, are separated by a distance of Lz/2.

4.2 Simulation protocol

We used LAMMPS (1Feb14/mod) for all simulations in this chapter, apart form
§4.3, where we also show results for the in-house code for validation. The initial
configurations for the Ewald and Wolf production runs were prepared according to
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Parameter Ewald Wolf Equation(s)
rsr 11 11 (2.3)
rc 11 11 (2.17)–(2.18)
η 9.42/L - (2.17)
ζ - 7.2/L (2.18)
∆t 1 1 (3.23)–(3.30)
κ 0.1540 0.1415 (3.10)
δ 8 8 (4.1)–(4.2)
Lz 105.30 104.67 (2.1)
Lx 34.91 35.06 (2.1)
ρm 960 957 (1.3)
ρ 0.0321 0.0320 (4.3)

Table 4.2: Input parameters for the equilibration and production runs, where κ is only
relevant for the latter. The numerical values for the damping factors η and ζ are given
as multiples of L = Lx = Ly for convenience. The following units apply: [rsr/c] = Å,

[η] = [ζ] = Å−1, [∆t] = fs, [κ] = kcal/(mol fs), [ρ] = Å−3 and [ρm] = kg/m3.

the same protocol. First, a lattice structure was created as a combination of three
cubic fcc structures, each containing 343 unit cells with four molecules. The lattice
was then melted in a 100 ps NVT run at 400 K using a Nosé–Hoover thermostat
with a relaxation time of 1 ps. Subsequently, a 100 ps NpT run was carried out at
the same temperature and a target pressure of 724.7 atm to get close to one of the
thermodynamic states studied in Ref. [8]. A Nosé–Hoover barostat with a relaxation
time of 2.5 ps was used for adjusting the pressure. Additional kinetic energy was
then supplied to or removed from the system and the volume was rescaled such that
the desired averages of T and p were achieved in a subsequent 2 ns NVE simulation
(see Tab. 4.3). All the relevant input parameters are listed in Tab. 4.2.

4.3 Validation

Several tests were performed to validate the simulation setup and to confirm that
the LAMMPS input scripts are correct. The in-house code, which was written by
the author of this thesis, is referred to as MDSPCE and it uses Ewald summation
for the treatment of electrostatic interactions. As MDSPCE was implemented to
run in serial, the simulations are limited to system sizes much smaller than 4116
molecules. We therefore used a cubic box containing only 256 molecules. Apart
from the box dimensions and the damping factor η, which was taken to be 5.5/L

with respect to the small box, the settings were identical to the ones for the Ewald
summation run listed in Tab. 4.2. We remark that finite size effects have to be
taken into account when carrying out a comparison of the results for two systems
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which considerably differ in size [44]. Nevertheless, the comparison should at least
allow us to identify any large-scale deviations which cannot be attributed to finite
size effects alone. The LAMMPS (1Feb14/mod) results were sampled during the
latter halves of the individual 2 ns NVE equilibration runs.

A comparison of the radial distribution functions and the velocity autocorrelation
function is given in §4.3.1. The Kirkwood g-factor and the dielectric constant are dis-
cussed in §4.3.2. Energy conservation and conservation of total system momentum
are analysed in §4.3.3–4.3.4. Finally, some complications with the coordinate con-
straining algorithm in LAMMPS are discussed in §4.3.5.

4.3.1 Radial distribution function and VACF

In contrast to a solid, a fluid has no long-range order. However, there is still some
short-range order, which can be characterised by the radial distribution function.
This quantity is a measure for the deviation of the actual distribution of atoms
from a truly homogeneous one. Assuming a monatomic isotropic system, the radial
distribution function can be expressed as [24]

g(r) =
1

2πr2ρN

〈

∑

i<j

δ(r − rij)

〉

, (4.3)

where ρ is the number density. For example, g(r) > 1 means that there are on
average more atoms in a thin spherical shell with radius r around any atom in
the system than suggested by the homogeneous number density. For our system
we can calculate the oxygen-oxygen (gOO), oxygen-hydrogen (gOH) and hydrogen-
hydrogen (gHH) radial distribution functions. As there is no long-range order, we
expect the individual radial distribution function to approach unity for sufficiently
large distances. Figure 4.3 compares the data sampled during the NVE equilib-
ration runs to the results for the in-house code. As can be seen, there is perfect
agreement.

Another important quantity for comparison is the velocity autocorrelation function,
〈v(τ) · v(0)〉, because it depends on the dynamics. It contains the information of
how long the velocity of an atom or a molecule is, on average, correlated with
itself at previous times. The results are shown in Fig. 4.4 and we notice very good
agreement with the in-house code.

4.3.2 Kirkwood g-factor and dielectric constant

The dynamic dielectric constant ǫ(ω), as a function of frequency ω, can be related
to the dipole moment autocorrelation function 〈M(τ) ·M(0)〉, where M is the total
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Figure 4.3: Radial distribution functions gOO, gOH and gHH at T = 400 K for the
MDSPCE in-house code (solid lines) and for the LAMMPS equilibration runs with Ewald
summation (coloured circles) and Wolf summation (coloured crosses).
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green line) and the LAMMPS equilibration runs with Ewald summation (red diamonds)
and Wolf summation (blue circles).



4.3. VALIDATION 37

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0  200  400  600  800  1000

MDSPCE
Ewald

Wolf

t [ps]

g k

Figure 4.5: Time evolution of the Kirkwood g-factor over a time period of 1 ns for the
MDSPCE in-house code (dashed green curve), LAMMPS with Ewald summation (solid
red line) and Wolf summation (dashed blue curve).

dipole moment of the simulation box [45]. However, in order to determine the
proportionality factor in Eqn (1.23), one only needs to know the static dielectric
constant, ǫ = ǫ(0). The calculation can therefore be simplified. We note that we
used ǫr to denote the relative dielectric constant in §1.2.4, because SI units were
used in that section. Here, we again use Gaussian units, for which ǫ ≡ ǫr. For
conducting boundary conditions, the static dielectric constant becomes [24]

ǫ = 1 +
4πρ

3kBT
gkµ

2, (4.4)

where µ is the dipole moment of a water molecule and gk is the Kirkwood factor,
given by

gk =
1

Nµ2

(

〈M2〉 − 〈M〉2
)

. (4.5)

The simulation results are shown in Figs 4.5–4.6 and summarised in Tab. 4.3. The
dielectric constants are in reasonable agreement with the values reported in Ref. [8].
The run with Wolf summation exhibits a slightly lower value, but longer simulation
times would be necessary to confirm a deviation definitively. We also note that the
density was slightly higher in our setup, which could partly account for the differ-
ence. In Ref. [43], ǫ was calculated for a system of 216 molecules at temperatures of
298 K and 373 K. Given these values, we can approximate the temperature deriv-
ative of ǫ and extrapolate the value for 373 K to 400 K, which yields ǫ ≈ 44. This
indicates that the magnitude is correct and both comparisons therefore suggest a
successful implementation.
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Figure 4.6: Time evolution of the static dielectric constant over a time period of 1 ns
for the MDSPCE in-house code (dashed green curve), LAMMPS with Ewald summation
(solid red line) and Wolf summation (dashed blue curve).

Run Teq [K] Peq [atm] gk ǫ

MDSPCE 398.5± 0.3 640± 10 3.4 46.2
Ewald 400.54± 0.03 725± 3 3.5 47.5 (47.4)
Wolf 400.17± 0.03 721± 3 3.3 45.6 (46.2)

Table 4.3: Comparison of the Kirkwood g-factors and dielectric constants. The errors
for temperatures and pressures were calculated using block average analysis. For gk and
ǫ, the value at 1 ns was taken, as both quantities are calculated from cumulative averages.
Literature values for the dielectric constant were taken from Ref. [8] and are shown in
brackets.
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Figure 4.7: Time evolution of the total energy for gradient simulations with the cHEX
algorithm and the HEX algorithm. The gradients in the cHEX simulations were 5.09 K/Å
for Ewald summation (solid red line with filled circles) and 5.14 K/Å for Wolf summation
(solid blue line with filled diamonds). The gradients in the simulations with the HEX
algorithm were 5.22 K/Å for Ewald summation (dashed red line with circles) and 5.69 K/Å
for Wolf summation (dashed blue line with diamonds). The average temperature was
approximately 403 K in all cases.

4.3.3 Energy conservation

In §3.2.3, we demonstrated that the cHEX algorithm conserves the energy of a
Lennard-Jones fluid very well over 106 steps. However, it has not been confirmed yet
that this property also holds for rigid molecules, such as SPC/E water. In Fig. 4.7,
the time evolution of the total energy during the first 9.5 ns of the production run
is compared to previous results obtained with the HEX algorithm. The time range
is limited to the first 9.5 ns of the production runs because the simulations using
the HEX algorithm were not extended any further due to the high energy loss. In
fact, the comparison was carried out in favour of the HEX algorithm, because a
smaller timestep of 0.5 fs was employed in the HEX simulations.

The cHEX algorithm conserves the energy well on this scale, but a slight energy
drift can be noticed on a finer scale. However, the drift is very small compared
to the energy loss caused by the HEX algorithm. The gradient in the simulation
using the HEX algorithm and Wolf summation was 5.69 K/Å and therefore slightly
higher than the others ranging between 5.09 − 5.22 K/Å. For a quantitative com-
parison, we therefore consider the energy loss for Ewald summation which is about
−120 kcal/mol after 9.5 ns. With an average temperature of T = 400 K, this cor-
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responds to −151 kBT . Even though a higher timestep was employed, the energy
only changed by approximately 5 kBT when the cHEX algorithm was employed.
Assuming that the quadratic scaling of the error also holds for rigid molecules, we
conclude that the HEX algorithm loses at least 100 times more energy than the
cHEX algorithm.

4.3.4 Centre of mass velocity

In theory, the centre of mass velocity vΩ should not be affected by the HEX al-
gorithm (see Eqn (3.9)). We did not explicitly verify that this was indeed the case
for the runs shown in Fig. 4.7, but we tested the cHEX algorithm. Figure 4.8 shows
the time evolution of v2Ω on a log-scale for both production runs. Over the first few
nanoseconds, we can observe an increase of this quantity by about three orders of
magnitude. After 10 ns, the error keeps increasing sublinearly on this scale. The
rapid initial growth might be caused by numerical round-off errors in the approx-
imation of v̇Γ in Eqn (3.29), because two very small quantities are subtracted from
one another, which can result in a loss of significance. This could be tested by
setting the approximation of v̇Γ to zero if v2Γ is below a certain threshold value.

A closer inspection of the time evolution of the individual components of vΩ in
Fig. 4.9 reveals that the z-component is mainly responsible for the increase of v2Ω.
It would be very interesting to see how the error scales with the timestep. Higher-
order approximations of v̇Γ and ξ̇i could possibly yield an improvement.

Previously, Lukes and Liang reported that the algorithm of Ikeshoji and Hafskjold
does not strictly conserve the instantaneous total system momentum [46]. They
found that this quantity was fluctuating rapidly around zero. Since we only collec-
ted 0.5 ps averages of vΩ,α during the simulation, the presence of fluctuations cannot
directly be confirmed with the data shown in Fig. 4.9. We therefore launched very
short simulations from a binary restart file at 10 ns with Ewald summation and
exactly the same settings as for the production run. However, we could not observe
any fluctuations of vΩ,α on a scale of 10−13 Å/fs. Whether this is an improvement
arising from the additional coordinate integration step in the cHEX algorithm is
subject to further investigation.

4.3.5 Coordinate constraints

The constraining algorithm used in LAMMPS suffers from a problem we wish to dis-
cuss in more detail. In §2.3, it was shown how rigidity of the molecules is imposed in
LAMMPS in combination with the velocity Verlet integration scheme. Constrain-
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ing forces are calculated in such a way that the imposed bond lengths are satisfied
after the next coordinate integration step. This procedure is very similar to the
original SHAKE algorithm proposed by Ryckaert and co-workers in Ref. [33]. With
SHAKE and Verlet integration, the time evolution of the coordinates is determined
by

ri(t+∆t) = 2ri(t)− ri(t−∆t) +
∆t2

mi

[

fi(t) + gRR,i(t)

]

, (4.6)

where gRR,i is a constraining force [31]. However, as pointed out by Andersen
in Ref. [31], the velocity Verlet version of SHAKE requires an additional velocity
correction step, or else the time derivatives of the constraints will not be satis-
fied exactly. Andersen called this modified algorithm RATTLE and the combined
integration scheme is given by

ri(t+∆t) = ri(t) + ∆tṙi(t) +
∆t2

2mi

[

fi(t) + gRR,i(t)

]

, (4.7)

ṙi(t+∆t) = ṙi(t) +
∆t

2mi

[

fi(t) + gRR,i(t) + fi(t+∆t) + gRV,i(t)

]

, (4.8)

where gRV,i comprises the additional velocity correction [31]. Applying the SHAKE
algorithm in combination with velocity Verlet integration, as described in §2.3, only
guarantees that the constraints on the coordinates are satisfied at time t+∆t,

r2ij(t+∆t) = d2ij, (4.9)

where rij = |rj − ri| and dij is the distance to be imposed between the sites i and j.
The additional velocity correction in the RATTLE algorithm is such that the time
derivative of Eqn (4.9) is satisfied as well,

2rij(t+∆t) · vij(t+∆t) = 0. (4.10)

In other words, there should be no velocity component along a bond, because this
would correspond to a vibration, which cannot happen with rigid bonds. In order to
test whether the current SHAKE implementation in LAMMPS satisfies Eqn (4.10),
we ran very short simulations of a system comprising 108 SPC/E water molecules.
The initial time was t = 0 and we monitored the quantity

φ = max
(i,j) fixed

n

∣

∣

∣

∣

2rij(n∆t) · vij(n∆t)

∣

∣

∣

∣

, (4.11)

which gives the largest absolute deviation from the condition (4.10). Of course
the maximum over i, j in Eqn (4.11) is restricted to pairs (i, j) with fixed bonds.
The coordinate constraints in Eqn (4.9) were perfectly satisfied up to a tolerance
of less than 10−12 Å throughout the run. The dependence of φ on the timestep is
shown in Fig. 4.10. We can clearly see that the maximum error φ scales as O(∆t2).
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Figure 4.10: Dependence of φ on the timestep. Each value (red circles) was calculated
in a simulation of 1000 timesteps. The temperature was approximately 298 K in all cases.
The runs started from the same, previously equilibrated binary restart file. In addition, a
quadratic fit (dashed black line) is shown.

This is exactly what one would expect, because the constraining forces gRV,i are of
O(∆t) [31].

How this inconsistency affects the dynamics of the system is hard to assess. Our
validation tests in §4.3.1–4.3.2 show good agreement with the in-house code which
uses SHAKE and Verlet integration. Therefore, we believe that the effect caused
by this error is small and the validity of the results in §4.4 is not in jeopardy.

4.4 Calculation of the electrostatic field

In this section we discuss the calculation of the electrostatic field. Our considera-
tions are based on the assumption that the underlying three-dimensional problem
can be reduced to a one-dimensional problem, as suggested by Bresme and co-
workers [1, 3, 6, 8]. However, the exact expression we use for calculating the field
from the charge density differs from the approach in Refs [1, 3, 6, 8].

We first divided the simulation box into Nbins regions which we call bins. The
xy-cross section of each bin is orthogonal to the z-direction and they are all of
equal volume. The width of a bin is therefore given by ∆z = Lz/Nbins. During
the production runs we sampled the average number densities of oxygen, ρO, and
hydrogen, ρH, for every bin in order to capture the spatial variation. Let us denote
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the average number densities for bin i by ρOi and ρHi, respectively, and assign these
values to the centre of the bin, i.e. zi = −0.5Lz +(i− 0.5)∆z for i ∈ {1, 2, .., Nbins}.
The average charge density for bin i is then given by [1]

ρqi = qOρOi + qHρHi. (4.12)

This quantity can be used to solve Poisson’s equation numerically. In order to
derive the relevant relations, we assume that the charge density is continuous. As a
starting point, we consider the previously introduced expression for the electrostatic
potential,

Φ(r) =

∫

V

d3r′ G(r− r′)ρq(r
′). (4.13)

If we assume that the charge density is only a function of z, we can rewrite the
above equation as [28]

Φ(z) =

Lz/2
∫

−Lz/2

dz Ḡ(z − z′)ρq(z
′), (4.14)

where we introduced the modified Green’s function

Ḡ(z) =

Lx/2
∫

−Lx/2

dx

Ly/2
∫

−Ly/2

dy G(x− x′, y − y′, z). (4.15)

Using this definition the electrostatic field in the z-direction is formally given by

Ez(z) = −dΦ

dz
(z) = −

Lz/2
∫

−Lz/2

dz′
dḠ

dz
(z − z′)ρq(z

′). (4.16)

The modified Green’s function Ḡ depends on the three-dimensional Green’s function
used in the simulation (see §2.2.1–2.2.2). Following Neumann [28], we will show
individually for both summation techniques how the modified Green’s functions
can be calculated from GE and GW, respectively.

4.4.1 Ewald summation

The Green’s function GE approximates the expression

G(r) =
1

LxLyLz

∑

k 6=0

4π

k2
eik·r, (4.17)
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where

k = (kx, ky, kz) = 2π(mx/Lx,my/Ly,mz/Lz), (4.18)

and mx, my and mz are integers [28]. If we integrate this expression, we get the
modified Green’s function

ḠE(z) =

Lx/2
∫

−Lx/2

dx

Ly/2
∫

−Ly/2

dy GE(x, y, z)

=

Lx/2
∫

−Lx/2

dx

Ly/2
∫

−Ly/2

dy
1

LxLyLz

∑

k 6=0

4π

k2
eik·r

=
1

Lz

∑

kz 6=0

4π

k2
z

eikzz. (4.19)

In the last step, we make use of the fact that the integration eliminates all terms
in the summation for which kx 6= 0 or ky 6= 0. The inverse Fourier transform in
Eqn (4.19) is given by [28]

G̃E(z) = 2π

(

−|z|+ Lz

6
+

z2

Lz

)

. (4.20)

We note that this function is not periodic unlike the RHS of Eqn (4.19). However,
this can easily be corrected by modifying the argument of G̃E by nesting the function

dpbc(z) = z − Lz nint
(

z

Lz

)

, (4.21)

where nint(x) rounds its argument to the nearest integral number. Then we finally
find that

ḠE(z) = G̃E(dpbc(z)), (4.22)

which is equivalent to Eqn (4.19).

4.4.2 Wolf summation

We can use exactly the same procedure to find the corresponding averaged Green’s
function for Wolf summation. The integration can be simplified by switching to
polar coordinates.

With the definition of r2 = x2+y2+z2 = s2+z2 and Eqn (2.18) we get the modified
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Green’s function

G̃W(z) =

Lx/2
∫

−Lx/2

dx

Ly/2
∫

−Ly/2

dy GW(x, y, z) (4.23)

= 2π

rc
∫

0

sds

[

erfc(ζ
√
s2 + z2)√

s2 + z2
− erfc(ζrc)

rc

]

. (4.24)

In Appendix C it is shown that the integral is given by

G̃W(z) = 2π

[

− |z|erfc(|z|ζ) +
√

z2 + r2c erfc(ζ
√

z2 + r2c)

+
e−z2ζ2

√
πζ

(

1− e−r2
c
ζ2
)

− 1

2
rcerfc(rcζ)

]

. (4.25)

If we modify the distance calculation using the function dpbc, we finally obtain

ḠW(z) = G̃W(dpbc(z)). (4.26)

4.5 Results

In this section we present the results for the 20 ns production runs with Ewald
and Wolf summation. In order to capture the spatial dependence, we used a fine
resolution of ∆z = 0.554 Å to calculate each quantity. However, sometimes we show
the results at a coarser resolution ∆z 7→ ∆z′ = m∆z, with m = 5 or 10, where we
average over the fine bins. All resolutions are compatible with Nbins = 190.

4.5.1 Temperature

The spatial variation in temperature along the z-direction is shown in Fig. 4.11.
There is no noticeable difference between the results with Wolf and Ewald sum-
mation. The peak temperature at the centre of the hot reservoir is about 542 K
and the lowest temperature at the centre of the cold reservoir is about 288 K. The
gradient is linear in the intervals [−Lz

2
+δ, 0] and [δ, Lz

2
−δ], i.e. the regions between

the reservoirs. Furthermore, the temperature profile is symmetric with respect to
z = 4 Å, which is in accordance with the setup. The results for linear least square
fits and heat fluxes are given in Tab. 4.4. The heat fluxes are calculated from
Eqn (3.11) and κ is an input parameter which was adjusted by trial and error. It
was reported previously that the truncation of long-range electrostatic interactions
leads to a lower thermal conductivity [5], which explains why the lower heat flux
for Wolf summation leads to a temperature gradient similar to that obtained for
Ewald summation.
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Run |∇T | [K/Å] |Jq,z| [1010 W/m2] Tavg [K]

Ewald 5.09± 0.02 4.39 403.61± 0.01

Wolf 5.14± 0.02 4.00 403.33± 0.01

Table 4.4: Temperature gradients and heat fluxes for the production runs. All errors were
calculated using block average analysis. The values for Jq,z do not have error estimates,
since they are input parameters (Eqn (3.11)).
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Figure 4.11: Spatial variation of the temperature along the z-axis for Ewald summation
(red solid line with circles) and Wolf summation (blue dotted line with diamonds). The
dashed line represents the average temperature of about 403 K for both runs. The spatial
resolution is 2.77 Å (coarse-graining with m = 5).
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Figure 4.12: Spatial variation of the average oxygen and hydrogen number densities
along the z-axis for Ewald summation (solid red line and dashed blue line) and Wolf
summation (red circles and blue diamonds). The spatial resolution is 2.77 Å (coarse-
graining with m = 5).

4.5.2 Number densities and charge density

The measured average number densities are shown in Fig. 4.12. All curves are
symmetric with respect to z = 4 Å. The treatment of long-range electrostatic
interactions does not seem to have a large effect on the individual average number
densities of oxygen and hydrogen. However, there are some noticeable differences
in the vicinity of the hot reservoir.

Figures 4.13–4.14 show the average charge densities for two different resolutions.
The quantity fluctuates around zero for both methods and the fluctuations are
strongest near the cold reservoir (see Fig. 4.13). Coarsening the resolution results
in a decrease of the average charge density, as can be seen in Fig. 4.14. This is reas-
onable, because the molecules are charge neutral and therefore only the molecules
which are not fully contained within an individual bin lead to a non-zero contribu-
tion. Since the net charge in a bin is divided by a larger volume, the average charge
density necessarily has to decrease. In the limit of only one bin, the charge density
would be exactly zero, because the system is charge neutral.

The average charge densities for Ewald summation and Wolf summation seem to
follow a similar trend (Fig. 4.13), but longer simulation times would be necessary
to improve the statistics.
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Figure 4.13: Spatial variation of the average charge density along the z-axis for Ewald
summation (solid red line with circles) and Wolf summation (dashed blue line with dia-
monds). The spatial resolution is 0.554 Å. The quantity qp denotes the charge of a
proton.
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Figure 4.14: Spatial variation of the average charge density along the z-axis for Ewald
summation (solid red line with circles) and Wolf summation (dashed blue line with dia-
monds). The spatial resolution is 2.77 Å (coarse-graining with m = 5). The quantity qp
denotes the charge of a proton.



50 CHAPTER 4. THERMAL POLARISATION IN WATER

−0.015

−0.01

−0.005

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

−40 −20  0  20  40

Ewald
Wolf

Φ
(z
)
[V

]

z [Å]

Figure 4.15: Spatial variation of the electrostatic potential along the z-axis. The coarse-
grained results for Ewald summation (solid red line with big circles) and Wolf summation
(solid blue line with big diamonds) have a resolution of 2.77 Å (m = 5). The corresponding
high-resolution results (0.554 Å) are represented by small symbols using the same colours.

4.5.3 Electrostatic potential

Given a charge density, the electrostatic potential can be calculated by convolution
with the appropriate modified Green’s function (Eqn (4.14)). For Ewald summation
we use ḠE (Eqn (4.22)) and for Wolf summation ḠW (Eqn (4.26)) to evaluate the
integral in Eqn (4.14) numerically. The approximation was carried out using the
midpoint rule and the average charge density with the highest resolution of 0.554 Å.
A coarse-graining step with m = 5 followed afterwards and the results for both
resolutions are presented in Fig. 4.15.

The potential is symmetric around z = 4 in accordance with our setup. There is
also good qualitative agreement between the results for both summation techniques,
but the gradients are slightly steeper for Ewald summation. Furthermore, we notice
that the potential is continuous and the gradient vanishes at the centres of the
reservoirs, i.e. at z = −48.7 Å and z = 4 Å. (It also vanishes at z ≈ 4± 14 Å.)

4.5.4 Electrostatic field

We only need to consider the z-component of the electrostatic field because of sym-
metry considerations. We did not directly compute the field from the potential.
Instead, we calculated the convolution of the charge density with the derivative of
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Figure 4.16: Spatial variation of the electrostatic field along the z-axis. The coarse-
grained results for Ewald summation (solid red line with big circles) and Wolf summation
(solid blue line with big diamonds) have a resolution of 5.54 Å (m = 10). The correspond-
ing high-resolution results (0.554 Å) are represented by small symbols using the same
colours.

the corresponding modified Green’s function according to Eqn 4.16. The approx-
imation was again carried out using the midpoint rule with the highest resolution
and a coarse-graining step with m = 10 followed afterwards. The results for both
resolutions are presented in Fig. 4.16. Due to the symmetry of the potential, both
curves in Fig. 4.16 are necessarily antisymmetric around the centre of the cold reser-
voir at z = 4 Å. The fields are strongest in the vicinity of the hot reservoir; away
from this point, the magnitude of the field decreases almost linearly. Interestingly,
both curves exhibit local minima close to the cold reservoirs before they vanish at
z = 4 Å. The absolute value of the field is almost everywhere higher for Ewald
summation than for Wolf summation. However, the order of the magnitude of the
field is the same in both cases. The high-resolution results for the field (Fig. 4.16)
exhibit larger fluctuations as compared to those for the potential (Fig. 4.15). This
is not surprising because the derivative with respect to z yields an additional factor
ikz in the summation in Eqn (4.19).

It ought to be borne in mind that the field strongly depends on the Green’s function
that was used for the calculation. To illustrate this point, we recalculated the Wolf
summation result with the modified Green’s function ḠE corresponding to Ewald
summation. This result is shown in Fig. 4.17 and compared to the old one. We
see a sudden increase by an order of magnitude compared to the previous results.
Furthermore, the local extrema in the vicinity of the cold reservoir vanished and the
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Figure 4.17: Spatial variation of the electrostatic field along the z-axis for Wolf sum-
mation calculated with ḠE (solid blue line with circles) and ḠW (dashed blue line with
diamonds), respectively. The spatial resolution is 5.54 Å (coarse-graining with m = 10).

maximum and minimum are shifted towards the cold reservoir. Periodic boundary
conditions are taken into account for both fields shown in Fig. 4.17. However, as
the results demonstrate, the field also depends significantly on the Green’s function
employed during the simulation. This makes sense because the molecules move
according to the short-range and long-range forces and the long-range contribution
depends on the particular Green’s function.

4.5.5 Comparison with literature data

In order to be able to compare our results more fully with the results reported
by Armstrong and co-workers (Ref. [8]), we carried out an additional simulation.
Similar settings to the ones in Ref. [8] were chosen in order to get a comparable
stationary state (see Tab. 4.5). The heat flux we imposed was slightly higher than
theirs, which implies an analogous increase in the temperature gradient. As can be
seen from Tab. 4.5, the pressure reported in the literature data was almost 80 atm
higher than the one we measured in our simulation. This discrepancy might also
be caused by the different heat fluxes used in the simulation.

A considerable difference between the two approaches arises from the way we cal-



4.5. RESULTS 53

Parameter Wolf Ref. [8]
|∇T | 5.22± 0.02 5.15± 0.02

Jq,z 3.90 3.81

Teq 400.60± 0.03 400
T 404.05± 0.01

P 647± 10 724.7± 24.2

Lz 105.9 110
δ 8 4
∆z 0.56 0.54
ρm 0.934 0.934
ζ 7.2/Lz 7.2/Lz

rc 11 11
rsr 11 11

Table 4.5: Simulation settings and average values for the comparison with Ref. [8]. The
following units apply: [∇T ] = [K/Å], [Jq,z] = [10−10 W/m2], [T ] = [K], [P ] = [atm],
[Lz] = [δ] = [∆z] = [rc/sr] = [Å], [ρm] = [g/cm3] and [ζ] = [Å−1

].

culate the electrostatic field. In Ref. [8], the field is given by

Ez(z) =
1

ǫ0

z
∫

−∞

dz′ρq(z
′), (4.27)

as opposed to

Ez(z) = − 1

4πǫ0

Lz/2
∫

−Lz/2

dz′
dḠW

dz
(z − z′)ρq(z

′), (4.28)

which is the expression we used. The division by 4πǫ0 is necessary because we
used Gaussian units to derive ḠW. It is not immediately obvious what the lower
boundary −∞ of the integral in Eqn (4.27) should be for a system with periodic
boundary conditions. We interpreted the lower boundary −∞ as the centre of
the hot reservoir, where the field should vanish due to the symmetrical setup. In
Ref. [8], the mirror symmetry of the field around the centre of the cold reservoir
was then employed in order to improve the statistics. Their production run was
10 ns long, whilst ours was 20 ns long, and therefore we expect the statistics to be
comparable even without the folding step.

The results are shown in Fig. 4.18. As can be seen, the fields differ significantly,
although they were calculated from the same charge density but with two different
formulas (Eqns (4.27)–(4.28)). We think that calculating the field with Eqn (4.27)
is inconsistent with the underlying treatment of electrostatic interactions, whereas
Eqn (4.28) is in accordance with the dynamics of the simulation.
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Figure 4.18: Comparison of the electrostatic field obtained for the new Wolf summation
run with the literature data. The results of Armstrong and co-workers (solid blue line
with filled diamonds) were taken from Ref. [8] and shifted such that the centres of the hot
reservoirs coincide. The field as calculated with Eqn (4.27) (dashed red line with circles)
is compared to the one obtained with Eqn (4.28) (dashed blue line with diamonds).

4.6 Discussion

The results in the previous section suggest that the electrostatic field caused by the
thermo-polarisation effect does not depend significantly on the underlying treat-
ment of long-range forces. In particular, we demonstrated that the field obtained
with the truncated Wolf summation approach is comparable to that obtained with
the widely used Ewald summation (Fig. 4.16). However, this is only the case if
the calculation takes into account the correct modified Green’s function. This func-
tion is derived directly from the three-dimensional Green’s function used in the
simulation (Eqn (4.15)) and is therefore compatible with the boundary conditions.

We can reproduce the results reported by Armstrong and co-workers (Fig. 4.18) if
we calculate the field as suggested in Ref. [8] (Eqn (4.27)). However, we believe
that this expression is compatible with neither the dynamics of the simulation nor
the imposed boundary conditions. Taking both considerations into account results
in weaker fields of the order of ±107 V/m rather than ±108 V/m (Fig. 4.18).

It is worth emphasising that the results reported both here and in Ref. [8] rely on the
assumption that the three-dimensional problem can be reduced to one-dimensional
considerations. This is achieved by first averaging the charge density over the bins
and then calculating the field (see Eqn (4.16) and Fig. 4.13). However, we lose some
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Figure 4.19: Illustration of a scenario where two molecules with different orientations
yield the same one-dimensional charge density. The bins are represented by dotted lines.

information about the orientation of a molecule if we only consider the total charge
contained in a bin. We illustrate this point in Fig. 4.19 with a simple example. In
this scenario, two different orientations give exactly the same charge distribution.
This might be a problem because the charge density is the only quantity that enters
the calculation of the field.

In order to take the orientation into account, we could carry out additional simu-
lations and calculate the three-dimensional field E(rijk, r

N (t)) on a lattice indexed
by (i, j, k), depending on the instantaneous positions rN of all atoms. This can
be done by convolution with the three-dimensional Green’s function GE or GW, as
explained in §2.2.1. The average field at each lattice site would then be given by

E(rijk) =
1

t

t
∫

0

dt′ E(rijk, r
N(t′)). (4.29)

This approach would probably require longer simulation times, but the validity
of the reduction to one dimension could be directly probed by comparing to the
previous results.
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Chapter 5

Conclusion and future work

In this work, we carried out NEMD simulations of rigid water molecules in order to
confirm the theoretically hypothesised and previously reported creation of an elec-
tric field arising from a temperature gradient. We found that the heat exchange
algorithm, which was used in previous investigations, leads to a considerable de-
crease in the total system energy for the simulation times of interest. Based on
analytical considerations, we were able to identify the major cause of the energy
drift and proposed a new method, which we have termed the cHEX algorithm.

In contrast to previous reports, we found that the treatment of long-range electro-
static interactions does not strongly influence the electrostatic field if it is calculated
in accordance with the boundary conditions employed. Our results suggest that the
field was overestimated by about one order of magnitude in previous work. This
was demonstrated to be a direct consequence of the incorrect expression used in
the calculation of the field in previous work.

The validity of this approach is based on the assumption that the problem can
be reduced to one-dimensional considerations, as was done in previous work. This
simplification could potentially be problematic, because different orientations of
the molecules can lead to the same one-dimensional charge density. We therefore
suggest the field should first be calculated on a three-dimensional grid for each in-
dividual configuration and time averages calculated afterwards. This is a necessary
test for consistency and we will address this point in future work.

In this work, we could establish the appropriate protocols which will allow us to
better understand the thermo-polarisation effect on a molecular basis. This is of dir-
ect importance for studying the physical background of non-equilibrium processes
involving strong temperature gradients and cross-phenomena.
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Appendix A

Long-range interaction

A.1 Ewald summation

Let us for simplicity assume that we have an ionic system instead of rigid molecules
with partial charges. Furthermore, we assume that the system is charge neutral.
We then wish to show that

GE(r) =
erfc(ηr)

r
− π

η2V
+

1

V

∑

k 6=0

4π

k2
e−

k2

4η2 eik·r, (A.1)

when inserted into

U lr(rN) =
1

2

∑

i 6=j

qiqjGE(rij) +
1

2

∑

i

q2i lim
r→0

[

GE(r)−
1

r

]

, (A.2)

is equivalent to

U lr(rN) =
1

2V

∑

k 6=0

4π

k2

∣

∣

∣

∣

∑

i

qieik·ri
∣

∣

∣

∣

2

e−k2/4η2 − η√
π

∑

i=1

q2i

+
1

2

∑

i 6=j

qiqj
erfc(ηrij)

rij
, (A.3)

which is the expression given by Eqn (12.1.25) of Ref. [24] (η ≡ √
α).

For the entire proof, we will follow Ref. [28]. Let us first consider the limit r → 0

in Eqn (A.2). The function erfc(x) is defined as

erfc(x) = 1− 2√
π

x
∫

0

dt e−t2 . (A.4)
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If we use a Taylor expansion, we find that

lim
x→0

(

erfc(ηx)

x
− 1

x

)

= lim
x→0

(

1− 2√
π
ηx

x
− 1

x
+O(x2)

)

= − 2η√
π

(A.5)

and we can therefore evaluate the expression

lim
r→0

[

G(r)− 1

r

]

= − 2η√
π
− π

η2V
+

1

V

∑

k 6=0

4π

k2
e−

k2

4η2 . (A.6)

We then consider the summation over i and j in Eqn A.2 and first collect all k-space
contributions, which gives

1

2

∑

i 6=j

qiqj
1

V

∑

k 6=0

4π

k2
e−

k2

4η2 eik·rij +
1

2

∑

i

q2i
1

V

∑

k 6=0

4π

k2
e−

k2

4η2

=
1

2V
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4π
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k2

4η2

∣

∣

∣

∣

∑

i

qieik·ri
∣

∣

∣

∣

2

. (A.7)

Furthermore, the sums involving the term π/η2V cancel out, since

−1

2

∑

i 6=j

qiqj
π

η2V
− 1

2

∑

i

q2i
π

η2V
= − π

2η2V

(

∑

i

qi

)2

= 0 (A.8)

holds, because we assumed charge neutrality. The remaining terms finally yield

U lr(rN) =
1

2V

∑

k 6=0

4π

k2

∣

∣

∣

∣

∑

i

qieik·ri
∣

∣

∣

∣

2

e−k2/4η2 − η√
π

∑

i=1

q2i

+
1

2

∑

i 6=j

qiqj
erfc(ηrij)

rij
, (A.9)

which is what we wanted to show.

A.2 Wolf summation

With the derivations in the previous section it follows immediately that

U lr(rN) =
1

2

∑

i 6=j

qiqjGW(rij) +
1

2

∑

i

q2i lim
r→0

[

GW(r)− 1

r

]

=
1

2

∑

i 6=j

qiqj

(

erfc(ζrij)

rij
− erfc(ζrc)

rc

)

−
(

erfc(ζrc)

2rc

+
ζ√
π

)

∑

i

q2i . (A.10)

This is exactly the expression given in Eqn (5.13) of Ref. [14], if we make the
identification ζ ≡ α and only consider those terms in the double summation for
which rij ≤ rc.



Appendix B

Heat exchange algorithm

B.1 Formulation

We wish to show that the velocity update

vi 7→ v̄i = ξvi + (1− ξ)vΓ ∀i ∈ γ, (B.1)

where ξ =
√
η, satisfies

K̄nt
Γ = Knt

Γ +∆Q = η Knt
Γ (B.2)

and

v̄Γ = vΓ, (B.3)

where all the terms have been defined in §3.1.1. First, we show that the centre of
mass velocity is conserved. That is easy to see, since

v̄Γ =
1

mΓ

∑

i∈γ
miv̄i =

1

mΓ

∑

i∈γ
mi

(

ξvi + (1− ξ)vΓ

)

(B.4)

= ξvΓ + (1− ξ)vΓ = vΓ. (B.5)

Therefore, the translational kinetic energy remains unaffected, namely

K̄t
Γ = Kt

Γ. (B.6)
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Physical quantity Conversion
energy (e) e∗ = eǫ−1

distance (d) d∗ = dσ−1

time (t) t∗ = t
√

mσ2

ǫ

density (ρ) ρ∗ = ρσ3

temperature (T ) T ∗ = TkBǫ
−1

Table B.1: The ‘lj’ reduced units system in LAMMPS. All quantities are defined in
terms of the basic units of mass (m), energy (ǫ) and distance (σ).

The total kinetic energy in the region Γ after the velocity update step is given by

K̄Γ =
∑

i∈γ

miv̄
2
i

2
=
∑

i∈γ

mi

2

(

ξvi + (1− ξ)vΓ

)2

=
∑

i∈γ

mi

2

(

ηv2i − 2ξ(ξ − 1)vΓ · vi + (ξ − 1)2vΓ
2

)

= ηKΓ − ξ(ξ − 1)mΓvΓ · vΓ + (ξ − 1)2
mΓvΓ

2

2

= ηKΓ +Kt
Γ

(

(ξ − 1)2 − 2ξ(ξ − 1)
)

= ηKΓ +Kt
Γ

(

η − 2ξ + 1− 2η + 2ξ
)

= ηKΓ +Kt
Γ

(

1− η
)

= η
(

Kt
Γ +Knt

Γ

)

+Kt
Γ

(

1− η)

= ηKnt
Γ +Kt

Γ. (B.7)

With the definition of η given by Eqn (3.7), we can therefore easily see that

K̄nt
Γ = ηKnt

Γ =

(Knt
Γ +∆Q

Knt
Γ

)

Knt
Γ

= Knt
Γ +∆Q, (B.8)

which proves the assertion (Eqn (B.2)).

B.2 Lennard-Jones NEMD simulation

The simulation software LAMMPS can interpret user-defined input scripts. A script
is a textfile containing all the instructions that should be carried out sequentially.
The NEMD simulation with the settings κ = 300 and a timestep of ∆t = 0.001 can
be fully reproduced with the example input script provided below. The conversion
to reduced units is given in Tab. B.1 and all the relevant input parameters are
summarised in Tab. B.2.
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Parameter Value
N 1728
ρ 0.8442
Teq ≈ 2.3

κ 300
∆t 0.001

Table B.2: Relevant input parameters for a typical Lennard-Jones NEMD simulation.

# Setup initial lattice structure

#################################

units lj

atom_style atomic

# density = 0.8842

lattice fcc 0.8442

region box block 0 6 0 6 0 12

create_box 1 box

create_atoms 1 box

mass 1 1.0

velocity all create 3.0 87287

# Define interaction potential

# (LJ , shifted , r_sr = 4)

##############################

pair_style lj/cut 4

pair_coeff 1 1 1.0 1.0 4

neighbor 0.3 bin

neigh_modify every 20 delay 0 check no

pair_modify shift yes

# Melt initial configuration

############################

variable Nwarmup equal 10000

variable dt equal 0.001

# temperature = 2.3

variable T equal 2.3

# use Langevin thermostat

fix fNVE_melt all nve

fix fLangevin all langevin ${T} ${T} 10.0 1000101

timestep ${dt}

thermo 1000

thermo_style custom step temp ke pe etotal press

run ${Nwarmup}

unfix fLangevin

unfix fNVE_melt

# Carry out NVE equilibration run

#################################

variable Nequi equal 100000

reset_timestep 0

fix fNVE_equi all nve

run ${Nequi}

unfix fNVE_equi
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# NEMD simulation

#################

reset_timestep 0

# define variables

variable N equal 1000000

# box dimension in z-direction and resolution

variable Lz equal zhi -zlo

variable delta equal ${Lz }*0.2

variable dz equal ${Lz }/100

# reservoir extents in z-direction

variable zlo_Thi equal zlo

variable zhi_Thi equal ${zlo_Thi }+${delta}

variable zlo_Tlo equal ${Lz}/2.

variable zhi_Tlo equal ${zlo_Tlo }+${delta}

# sampling and averaging frequencies

variable Nsamp equal 10

variable Nevery equal 1000

variable Nrepeat equal ${Nevery }/${Nsamp}

# use NVE integration

fix NVE all nve

# define regions

region Thi_reg block 0 INF 0 INF ${zlo_Thi} ${zhi_Thi}

region Tlo_reg block 0 INF 0 INF ${zlo_Tlo} ${zhi_Tlo}

region Tgrad_reg block 0 INF 0 INF ${zlo_Thi} ${zlo_Tlo}

# compute individual temperature

compute cTlo all temp/region Tlo_reg

compute cThi all temp/region Thi_reg

compute cTgrad all temp/region Tgrad_reg

# define fixes that add/remove heat during every timestep

fix fHi all heat 1 +300. region Thi_reg

fix fLo all heat 1 -300. region Tlo_reg

# calculate energies for spatial and temporal averaging

variable vN equal count(all)

compute ke all ke/atom

compute cT all temp

compute cP all pressure thermo_temp

compute cPe all pe

compute cKe all ke

variable vpe equal c_cPe/v_vN

variable vke equal c_cKe/v_vN

variable ve equal v_vke+v_vpe

# write time averages to the file tavg.dat

fix fTavg all ave/time ${Nsamp} ${Nrepeat} ${Nevery} c_cT c_cTlo c_cTgrad

c_cThi c_cP v_ve v_vpe v_vke file tavg.dat

# write spatial averages to the file savg.dat

fix fSavg all ave/spatial ${Nsamp} ${Nrepeat} ${Nevery} z lower ${dz} c_ke file

savg.dat units box

# define timestep

timestep ${dt}
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# write to console every 1000 steps

thermo_style custom step c_cT c_cTlo c_cTgrad c_cThi c_cP v_ve v_vpe v_vke

# carry out N simulation steps

run ${N}

Listing B.1: Full LAMMPS (1Feb14) input script for a Lennard-Jones NEMD
simulation.



Appendix C

Electrostatic field

C.1 Wolf summation

The modified Green’s function for Wolf summation is given by

G̃W(z) = 2π

rc
∫

0

sds

[

erfc(ζ
√
s2 + z2)√

s2 + z2
− erfc(ζrc)

rc

]

, (C.1)

where r2 = x2 + y2 + z2 = s2 + z2. We will only show how to evaluate the first
integral, because the second one is trivial. Let us therefore consider the expression

I =

rc
∫

0

ds s
erfc(ζ

√
s2 + z2)√

s2 + z2
. (C.2)

With the definition τ(s) =
√
s2 + z2, the integral can be rewritten as

I =

τ(rc)
∫

|z|

dτ erfc(ζτ). (C.3)

The error function is defined as

erf(x) =
2√
π

x
∫

0

dt e−t2 , (C.4)

and the function is related to the complementary error function through erfc(x) =

1− erf(x). Furthermore, the identity

∫

erf(z)dz = z erf(z) +
e−z2

√
π

(C.5)
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holds. With these identities it is straightforward to show that

d
∫

c

erfc(ax)dx =

d
∫

c

(1− erf(ax)) dx

= (d− c)− 1

a

[

x erf(x) +
e−x2

√
π

]ad

ac

= d erfc(ad)− c erfc(ac) +
1√
πa

[

e−a2c2 − e−a2d2
]

. (C.6)

If we make the identifications c = |z|, d = τ(rc) and a = ζ, the solution of Eqn (C.2)
is given by

I = τ(rc) erfc(ζτ(rc))− |z| erfc(ζ|z|) + 1√
πζ

[

e−ζ2z2 − e−ζ2τ(rc)2
]

(C.7)

and the expression for ḠW in Eqn (4.25) follows, since the integration of the second
term is trivial.
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