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Abstract

Many numerical methods show a dependence of the solution on the orientation of

the underlying computational grid with respect to the flow. Initially small numerical

errors can have considerable effects on the result when the model exhibits physical in-

stabilities. This effect is known as the grid orientation effect (GOE). Extensive research

has been carried out on the GOE for miscible displacement, and similar effects are also

observed for the numerical simulation of multi-phase, multi-component thermal flow

in porous media. This investigation aims to find a numerical scheme that minimizes

the GOE for miscible displacement whilst being suitable for extension to the more com-

plex case of thermal flow in porous media. We present a novel approach of partially

stabilizing the concentration front by employing a level set function.
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Introduction

Optimizing the process of recovering oil from a reservoir is of great importance for the

petroleum industry. Mathematical formulations of various physical models have been

devised in order to predict the performance of particular recovery schemes. These mod-

els usually consist of coupled, non-linear partial differential equations that, in general,

cannot be solved analytically. Therefore computational simulations help us to better un-

derstand the physical and chemical phenomena associated with reservoir flows [12].

1.1 ENHANCED OIL RECOVERY PROCESSES

The oil is usually trapped in microscopic pores in the rock, and high pressure gradients

are necessary to force it to flow. Different techniques are utilized to produce the oil. An

important class of recovery techniques are Enhanced Oil Recovery (EOR) processes.

One type of EOR is the injection of a chemical species such as CO2, which will mix with

the hydrocarbon and undergo a phase change. This type of replacement procedure is

termed miscible displacement [12].

Another, more complex, thermal process is in-situ combustion. In this approach, an ig-

nition due to the injection of oxygen, and possibly a fluid, leads to the formation of a

self-sustaining, propagating combustion front which increases the mobility of the oil and

allows for production [24, 9]. This method is particularly interesting for the exploitation

of heavy-oil reservoirs [9].

1.2 MOTIVATION

Recent work of van Odyck et al. [33, 34] provides a mathematical formulation, as well

as numerical solutions, of multiphase, multicomponent thermal flow in porous media.

1
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Such systems are challenging to solve numerically for several reasons. The governing

equations are coupled and non-linear, and the various physical phenomena happen on

length scales differing by several orders of magnitude [12]. Furthermore, for each time

step expensive phase equilibrium ("flash") calculations are required in order to determine

the phase decomposition of the species. Highly efficient algorithms are therefore desir-

able [34].

Another aspect which increases the complexity of solving the governing flow equations

numerically is physical instabilities at the modelling scale [17]. In order to address this

problem, we impose simplifying assumptions on the equations considered in [33]. They

then reduce to miscible displacement, which serves as an easier, well studied problem

that has been investigated extensively in the past five decades [5]. Carrying out stability

analysis for radial source flow, Tan and Homsy [30] found that the displacement is desta-

bilized by two parameters, the mobility ratio and the Péclet number. Difficulties in the

simulation arise since the numerical errors can bias or even trigger such instabilities [17].

In some cases this results in incorrect numerical results as observed by Todd et al. [31].

They found that different orientations of the underlying grid lead to completely different

solutions, which is called the grid orientation effect (GOE). A famous test problem to illus-

trate this effect is the so-called quarter five-spot problem, which will be explained in detail

in the next chapter.

Since its discovery, the GOE has been studied extensively due to its importance for reser-

voir simulations. Many newmethods aiming to eliminate the problem have been devised.

These improved methods are successful in that the more advanced schemes nearly elimi-

nate grid orientation for a certain range of resolutions [2, 6, 18]. However, these methods

are typically complicated and hence computationally expensive. For complex systems

like thermal flow in porous media, this additional computational cost might be substan-

tial, since reconstruction of states, for example, involves carrying out additional phase

equilibrium calculations. This important aspect motivates the present investigation of

the GOE.

The aim of this report is to compare the grid orientation effect exhibited by various ex-

plicit finite volume schemes that are suitable for the simulation of thermal flow in porous

media. A first-order rotationally invariant numerical dispersion tensor is employed for

stabilization. This suppresses a physical instability for the sake of numerical consistency

between different grid orientations. Throughout the report, the term ’dispersion’ refers

to velocity-dependent mixing unless explicitly stated otherwise. Compared to previous

work, a wider range of resolutions are investigated in this report. In order to track the evo-

lution of the concentration front, a level set function is employed and a novel approach of
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partially stabilizing the front is presented. If this is to be a successful approach, it should

minimize the effect of grid orientation whilst not being too expensive, in order for it to

be applicable to thermal flow simulations.

1.3 PREVIOUS WORK

Previous approaches concerning the GOE range from employing methods that better

capture the directionality of the flow [36, 16, 27, 28, 11] and adding stabilizing rotationally

invariant numerical diffusion-dispersion terms [29, 10, 2, 13, 6, 18], to adapting the grid

itself [19]. A good summary of past work is given in Kozdon [17].

Comparisons to past work are not easy, because most of the available results are low-

resolution (less than 100× 100 cells), apart from a few exceptions [8, 5, 37]. In some cases

this was probably due to insufficient computational power, however, even in more recent

papers, e.g. [18, 19], only low-resolution results of less than 100× 100 cells are provided.

Since the GOE does depend on the grid spacing, as demonstrated by Kozdon [17] for the

method devised by Shubin and Bell [29], this is disappointing.

Furthermore, the treatment of the injection and production wells in the quarter five-spot

configuration is important. Depending on the underlying method, modelling the wells

as a point source can lead to very large pressure gradients in the vicinity of the wells [12].

Therefore, some authors use special procedures for incorporating the wells, e.g. [29, 5].

Also, the stability of the model is determined by two parameters and the various schemes

perform differently depending on the choice of these parameters. In this investigation,

we try to choose the parameters in such a way that the results are comparable to previous

investigations and we provide high-resolution results for the two symmetric configura-

tions.

Finally, the previous work ranges from employing fully implicit methods to explicit meth-

ods. The former are more stable, but require solving large systems of equations for each

time step, whilst the latter have better computational features but suffer frommore restric-

tive stability criteria. A variety of methods, termed IMPES, solve implicitly for pressure

and explicitly for saturation. These methods are widely used, but not particularly effi-

cient due to the small time steps needed for stability [12]. However, in this report only

methods that follow the IMPES approach are considered, because this approach is used

in simulations of thermal flow in porous media [34].

Accurate modelling of physical phenomena such as fingering is beyond the scope of this

report. Readers who are interested in this are referred to [7, 5]. The main interest lies
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in minimizing the difference in the solutions of the diagonal and parallel grid in the

quarter five-spot configuration. As a means of achieving this, dispersion must be added,

which is not necessarily physical, but serves in stabilizing the numerical solution. In

fact, by adding high enough amounts of numerical diffusion fingering can be completely

suppressed. Hence it is suggested that numerical diffusion and dispersion are kept to a

minimum [5].

1.4 OUTLINE

In Chapter 2, the equations for miscible displacement are derived, emphasizing the rela-

tion to thermal flow in porous media. The quarter five-spot problem is also explained

in this chapter. The numerical schemes for solving this problem are presented in Chap-

ter 3. Separate convergence tests for the elliptic and hyperbolic solvers are presented to

support their correct implementation. The results are finally presented in Chapter 4, qual-

itatively comparing the performance of various hyperbolic schemes. In the last chapter,

the findings are summarized and possible future improvements are addressed.
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Miscible displacement

As outlined in the introduction there is a relationship between the equations modelling

multi-phase, multi-component thermal flow in porous media and the simpler set of equa-

tions used in this report. In the following section we will derive the equations for mis-

cible displacement. We begin the derivation from the mass conservation laws and then

consider the effects of diffusion and dispersion.

2.1 GOVERNING EQUATIONS

The flow in a porous medium is governed by a set of equations that attempt to track

the behaviour of the fluid [17]. The model for miscible displacement does not take into

account temperature and comprises only a simple one-phase, two-component flow. How-

ever in the absence of diffusion-dispersion terms, we can derive the formulation of these

equations from a more general system of conservation laws. Following [17], we have a

number of chemical components, nc, for which we have a vector of mass concentrations,

c = (c1, ..., cnc)
T, in a multi-phase, multi-component flow. These obey a set of conserva-

tion laws of the form

φ
∂ci
∂t

+∇ · Fi(c) = qi (2.1.1)

where φ models the porosity of the medium, q = (q1, ..., qnc)
T represents the vector of

source/sink terms and Fi(c) is the mass-flux vector for component i. The components

are allowed to flow together in np different phases and α denotes the phase index. The

saturation Sα of phase α, is the volume fraction of the fluid in this phase. Therefore we

require

np

∑
α=1

Sα = 1 (2.1.2)

5



6

to be satisfied. We can also define the fraction of component i in phase α as xi,α. The

vector of mole fractions in phase α is then given by [33]

xα = (x1,α, ..., xnc,α)
T =

nα

eTnα
(2.1.3)

where nα is the vector of moles of each component in phase α per pore volume and

e = (1, 1, ..., 1)T ∈ R
nc . We can easily see that

nc

∑
i=1

xi,α = eTxα =
eTnα

eTnα
= 1. (2.1.4)

The relation between these quantities and the phase densities, ρα, is given by [17]

c =
np

∑
α=1

ραxαSα. (2.1.5)

Neglecting gravity and capillary pressure relationships, the average velocity of a fluid

phase α can be written as

uα = − kr,α
µα

K∇p (2.1.6)

where K is the absolute permeability tensor, kr,α the relative permeability and µα the

viscosity of phase α. Whereas K is a property of the rock defining how easily the fluid

can flow, the relative permeability kr,α defines how easily an individual phase can flow

in the presence of others . Finally, the mass-flux can be written as [17]

Fi =
np

∑
α=1

xi,αραuα. (2.1.7)

These equations define the flow in thermodynamic phase equilibrium [17].

2.1.1 Simplifying assumptions

We now impose the simplifying assumptions of incompressible flow (density is constant

in space and time) of just two chemical components c1 and c2. Both chemicals are as-

sumed to be in a single phase, thus np = 1. If we multiply equation (2.1.1) by eT from the

left, we get

φ
∂(c1 + c2)

∂t
+∇ · (F1 + F2) = q1 + q2 (2.1.8)

and from the equations (2.1.2) and (2.1.5) it follows, that the time derivative of the first

term vanishes. Using the equations (2.1.4) and (2.1.7), we can further simplify equa-

tion (2.1.8) to

∇ · (uρ) = q1 + q2 (2.1.9)
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where u := u1 and ρ := ρ1. Furthermore, if we define c := c1, c̃ := c2, q1 := ĉq and

q2 := c̄q, then the equations (2.1.1) and (2.1.9) become

φ
∂

∂t

(

c

c̃

)

+

(

∇ · (x1,1uρ)

∇ · (x2,1uρ)

)

= q

(

ĉ

c̄

)

(2.1.10)

∇ · (ρu) = q (2.1.11)

given that ĉ and c̄ add up to unity. From equation (2.1.5) it follows that c = x1,1ρ and if

we set ρ to be unity, we get

φ
∂

∂t

(

c

1− c

)

+

(

∇ · (cu)
∇ · ((1− c)u)

)

= q

(

ĉ

1− ĉ

)

(2.1.12)

∇ · u = q (2.1.13)

u = − kr,1
µ

K∇p (2.1.14)

since we can replace c̃ by 1− c. Therefore, it is only necessary to track the concentration of

one fluid. Additionally, the factor
kr,1
µ is replaced by an effective mobility of the form [29]

1

µ(c)
=

(

c

µc
1
4

+
1− c

µc̃
1
4

)4

(2.1.15)

where µc and µc̃ are the viscosities of the two fluids respectively. Adding a diffusion-

dispersion term, this finally allows us to rewrite the set of equations as presented in [29]

φ
∂

∂t
c+∇ · (cu)−∇ ·D∇c = qĉ (x, y, t) ∈ Ω × (0, T)

∇ · u = q (x, y) ∈ Ω

u = − K

µ(c)
∇p (x, y, t) ∈ Ω × (0, T)

(2.1.16)

(2.1.17)

(2.1.18)

in two spatial dimensions. In this report, fluid is always injected with concentration

equal to unity and the production wells produce whatever fluid happens to be present.

Therefore, we can express ĉ as [29]

ĉ =



















1 if q > 0,

c if q < 0,

0 otherwise.

(2.1.19)

2.1.2 Adverse displacement

The equations for miscible displacement exhibit instabilities in two dimensionless param-

eters, as presented in [30] for radial source flow. The Péclet number, Pe, relates source
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strength to diffusivity and affects the dynamics of the flow, i.e. the viscous fingering

process [5]. A definition of Pe is given in §3.6.4, where we introduce the numerical dis-

persion tensor. The second parameter is the mobility ratio M, which is the ratio of the

viscosities of the resident fluid (µc̃) and the injected fluid (µc). If diffusion and dispersion

are neglected and M is greater than unity, the displacement is unstable. In this case the

displacement process is called adverse [29].

As detailed in [6], physical diffusion and dispersion terms are mathematically necessary

for stabilizing the set of equations (2.1.16)–(2.1.18). However, physical effects cannot al-

ways be resolved by the numerical scheme unless the resolution is very high. Therefore,

it is necessary to replace D by a numerical diffusion-dispersion term to provide stabiliza-

tion.

2.2 QUARTER FIVE-SPOT PROBLEM

Asmentioned previously, the GOE is triggered by numerical errors due to non-rotationally

invariant operators. In order to demonstrate the effect, at least two different grid orien-

tations with respect to the flow have to be considered. The quarter five-spot configuration

illustrated in Fig. 2.1 consists of a periodically repeated pattern of production and injec-

tion wells. Choosing a square grid with equal mesh spacing in both dimensions such

that the vertices coincide with an injection and a production well will cause flow diago-

nal to the grid lines. Fixing one vertex, rotating the grid by 45◦ and upscaling it by
√
2

results in a second configuration, where the flow is parallel to the grid lines. The two

configurations will be referred to as diagonal and parallel grid, respectively.

The positions of the wells are chosen such that the symmetry in Fig. 2.1 holds. In this rep-

resentation every four adjacent wells act as a point source which is four times as strong

and located at the symmetry point. However, in the finite volume discretization they

are represented as cell averages. Another well configuration considered in this report

models the wells as circles with a cut-off radius (see §2.3).

For the solutions to be comparable, we choose the same grid spacing for both grid types.

Since an edge of the parallel grid is
√
2 times longer than the corresponding diagonal

one, the resolution for the parallel grid is taken to be
√
2 times higher. Once the solution

for the parallel grid (parallel solution) is calculated, we project a quarter of the parallel

domain onto the upper part of the diagonal domain to obtain the diagonal solution, as

illustrated in Fig. 2.2.

Let xD denote the coordinates of a diagonal grid cell centre with respect to the dashed
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Figure 2.1: Repeated well pattern for the quarter five-spot configuration, where I marks an injec-
tion well and P a production well. (a) The solid black line is the parallel grid, the black dashed line
constitutes the diagonal grid and the red dotted line indicates no-flow boundaries. (b) A repeated
configuration for the parallel grid consisting of four grids.

base in Fig. 2.2. Then, for each cell of the diagonal grid, the bilinear interpolation is

carried out in the following four steps:

1. Given xD (red point), calculate the coordinates xP with respect to the base for the

parallel grid (solid base in Fig. 2.2).

2. If the y-component of xP is negative, change its sign according to the symmetry

conditions.

3. Determine the cell centres of the four nearest neighbouring parallel grid cells (blue

points) with respect to xP.

4. Numerate the parallel grid points according to xi = (xi, yi), i = 1, ..., 4, clockwise

starting with the one closest to the chosen origin. Use the same numeration scheme

for the average parallel grid cell values qi. The interpolated value for the diagonal
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(a) projection from parallel to diagonal grid

(x1, y1)

(x2, y2) (x3, y3)

(x4, y4)

(x, y)

(b) bilinear interpolation

Figure 2.2: Four-point stencil for the bilinear projection of the parallel solution (blue points) onto
the diagonal one (red point).

cell is then given by

1

∆x∆y

[

(x3 − x)(y3 − y)q1 + (x4 − x)(y− y4)q2

+(x− x1)(y− y1)q3 + (x− x2)(y2 − y)q4

]

.

From this formula it is easy to see that the contribution of each of the parallel grid

values is weighted by the area spanned by xP and the respective diagonally oppo-

site parallel grid point (see dashed lines in Fig. 2.2b).

Employing this interpolation procedure, the diagonal grid solution obtained from the

parallel one is by definition symmetric. Asymmetries of the parallel solution are therefore

eliminated in the projection step. This is justified because all the employed operators are

symmetric with respect to the spatial directions, even in the cases where dimensional

splitting is applied (see §3.6.1).

2.3 WELL MODEL

In this report we consider two different well models: point sources and circular wells.

The source terms for both representations are denoted by qP(x, y) and qC(x, y) and their

discretized versions by qP and qC, respectively. Independently of the model, we want
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to inject the same amount of fluid per unit time for comparison. We can achieve this by

requiring that the integral averages are the same. For the injection well in Fig. 2.2a, this

is satisfied, if the relation

∆x
∫

0

dx

∆y
∫

0

dy qP(x, y) =

rC
∫

0

rdr

π
2
∫

0

dφ q̃C(r, φ) (2.3.1)

holds, where rC denotes the cut-off radius and q̃C(r, φ) := qC(x, y) describes the circular

well in polar coordinates. By symmetry, relation (2.3.1) holds also for the second well in

the diagonal configuration and for the three other wells in the parallel one. The functions

qP(x, y) and q̃C(x, y) are step functions, with constant values qP and qC inside the well

and zero outside, respectively. Carrying out the integration, we get

qP∆x∆y =
qCr2Cπ

4
, (2.3.2)

which relates both models. In the case of a circular well, exact volume fractions are taken

into account when qC is calculated.
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Numerical scheme

Van Odyck et al. used explicit schemes in their recent studies [33, 34]. We follow this strat-

egy for solving the non-linear, elliptic-hyperbolic set of equations (2.1.16)-(2.1.18) and use

the IMPES approach explained in Fig. 3.1.

Input: 

Calculate using

to get the new pressure

Input:

Solve 

Loop over
time

Elliptic Solver

Hyperbolic Solver

Level Set Solver
Get Stable Time Step

for the new concentration

Solve 

Input:  

−∇ · K
µ(c)

∇p = q

u = − K
µ(c)

∇p

φ ∂
∂t c+∇ · (cu)−∇ ·D∇c = qĉ

pn+1

pn+1

cn+1

cn

un+1

cn, un+1

Figure 3.1: IMPES method.

12
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For each time step, the elliptic equation (2.1.17) is solved implicitly to obtain the pressure

for the next time step. Subsequently, the velocity is calculated from equation (2.1.18) to

convect the concentration field. This approach completely decouples the elliptic and hy-

perbolic solvers and allows different schemes to be combined with ease. In this chapter,

we will first present the staggered grid that is employed. The benefit of this choice will

become apparent in the following sections when the schemes are explained in detail. The

implementation of both solvers is supported by individual convergence tests against an-

alytical solutions. Finally, the operator splitting and incorporation of the dispersion term

is presented along with a stability analysis to determine the maximum stable time step.

3.1 STAGGERED GRID

There are a variety of different grids available, some of which are more suitable for in-

compressible flow problems than others [23]. Most of the past work on the GOE outlined

in the introduction has been carried out using structured grids. However, some recent

work has also investigated structured and unstructured quadrilateral grids [19]. In this

report we use a structured, staggered grid (see Fig. 3.2), as used in [34], for the following

reasons:

• it allows Neumann boundary conditions and equation (2.1.17) to be satisfied simul-

taneously and straightforwardly;

• the pressure-velocity decoupling observed for the incompressible Navier-Stokes

equations does not occur [23];

• the velocities do not coincide with the wells, when they are modelled as point

sources at the cell centre;

• many hyperbolic schemes require velocities at cell interfaces so that no interpola-

tion is needed.

3.2 DOMAIN BOUNDARY

In order to update a specific cell, the numerical scheme requires information about the

neighbouring cells. Close to the boundary of the computational domain, this information

is not always available. However, we can add additional layers of cells called ghost cells

(shaded area in Fig. 3.2a) and use them whenever information from outside the domain

is needed. The question of how to define the states of these ghost cells remains. For
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(a) N1 × N2 staggered grid
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u− 1
2 ,0

u− 1
2 ,1

u− 1
2 ,−1

v0,− 1
2

v1,− 1
2

v−1,− 1
2

s1,1

s0,0s−1,0

u− 3
2 ,0

u 1
2 ,0

v0,− 3
2

v0, 12

(b) detailed view

Figure 3.2: Staggered grid; (a) full grid with two layers of ghost cells; the red dashed lines represent
no-flow boundaries, scalar quantities (pressure, concentration and level set function) are stored at
the cell centre and denoted by circles (s). Black triangles (u) and rectangles (v) represent the velocity
u = (u, v)T; (b) detailed view of the left, bottom corner.

the quarter-five spot configuration, we want to keep the symmetry of the periodically

repeated well configuration. This can be achieved by imposing no-flow boundary condi-

tions [29]. These boundaries are such that the gradient of scalar quantities like pressure,

concentration or the level set function (denoted by s in Fig. 3.2b) vanish at the domain

boundary. Let us consider the pressure in ghost cell (−1, 0). The value p−1,0 is set to p0,0,

yielding a zero pressure gradient at the boundary when central differences are applied.

The boundaries are such that the velocity is reflected (u− 3
2 ,0

= −u 1
2 ,0

and v0,− 3
2
= −v0, 12

)

implying a vanishing normal velocity at the boundary.

3.3 ELLIPTIC SOLVER

In this section, we first transform the pressure equation (2.1.17) and then discretize it. The

computational domain Ω is divided into a grid of N1 by N2 cells, as shown in Fig. 3.2a.

We want to estimate the M = N1 × N2 values

p((l + 0.5)∆x1, (m+ 0.5)∆x2), 0 ≤ l ≤ N1 − 1, 0 ≤ m ≤ N2 − 1, (3.3.1)

numerically. For this, we want to write the discretized form of equation (2.1.17) as a

linear system of equations

Ap = −q+ b (3.3.2)



15

where A ∈ R
M×M and p represents the pressure stored at the cell centres in a column-

major ordering. The right-hand side of equation (3.3.2) consists of two parts: q is the

discretized form of the source term and b incorporates correction terms for the domain

boundary. The explicit form of A depends on the stencil we choose. Yanosik and Mc-

Cracken [36] realized the importance of employing a stencil that takes into account all

eight neighbouring cells in order to minimize the GOE. In their work, they combined

two five-point stencils rotated by 45◦ with respect to each other (see Fig. 3.3a).

We follow a similar but more general approach. As Yanosik and McCracken only al-

low for uniform mobility, the mobility tensor does not change under transformation to

rotated coordinates [36]. This means central difference approximations of the spatial

derivatives in the rotated coordinate system again lead to a five-point stencil. In the

more general case of a diagonal permeability tensor, the same approximation leads to a

nine-point stencil in the rotated coordinate system. Thus, we combine a five-point sten-

cil contribution arising from the unrotated coordinate system with a nine-point stencil

contribution from the rotated coordinate system (see Fig. 3.3b).

(a) combined five-point stencils

(b) combined five-point and nine-point stencils

Figure 3.3: (a) Weighted nine-point stencil consisting of a parallel stencil (left) and a diagonal stencil
(right) as used by Yanosik and McCracken [36]. (b) Weighted nine-point stencil consisting of a five-
point stencil (unrotated coordinates) and a nine-point stencil (rotated coordinates) contribution.
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Under the assumption of a diagonal permeability tensor, we can cast equations (2.1.17)–

(2.1.18) into

∇ ·
(

a(x1, x2) 0

0 ã(x1, x2)

)

∇p(x1, x2) = −q(x1, x2) (3.3.3)

with M := diag(a, ã) = Kµ(c)−1. We will formulate the discretization in terms of the

mobility tensor M. Application of the five-point stencil is straightforward in the (x1, x2)-

coordinate system, since it is chosen to coincide with our grid axes. However, care must

be taken when employing the diagonal stencil in the rotated coordinate system because

the mobility tensor needs to be transformed as well.

3.3.1 Transformation to the rotated coordinate system

Wewill assume equal grid spacing in both spatial dimensions throughout this section. In

this case, the diagonal stencil is rotated by 45◦ with respect to the parallel one, which

simplifies the transformation and makes the equations more readable. The extension to

rectangular grid cells is straightforward. The new coordinates (ξ1, ξ2) are chosen such

that the original basis vectors e1 and e2 are rotated by 45◦, illustrated in Fig. 3.4.

e1

e2

x1

x2

ξ1ξ2

ẽ1ẽ2

Figure 3.4: Rotation of the basis vectors.

The new basis vectors are then given by
(

ẽ1

ẽ2

)

=

(

R 0

0 R

)(

e1

e2

)

, (3.3.4)

where

R =
1√
2

(

1 −1

1 1

)

and R−1 =
1√
2

(

1 1

−1 1

)

(3.3.5)

are rotation matrices. The coordinates transform according to
(

ξ1

ξ2

)

= R−1

(

x1

x2

)

⇔
(

ξ1

ξ2

)

=
1√
2

(

x1 + x2

x2 − x1

)
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and
(

x1

x2

)

=
1√
2

(

ξ1 − ξ2

ξ1 + ξ2

)

. (3.3.6)

Using Einstein summation convention, the derivatives and infinitesimal changes trans-

form as

∂̃l = R m
l ∂m ⇔ ∂̃1 =

1√
2
(∂1 + ∂2) and ∂̃2 =

1√
2
(∂2 − ∂1) (3.3.7)

dξ i = (R−1)
i
jdx

j ⇔ dξ1 =
1√
2
(dx1 + dx2) and dξ2 =

1√
2
(dx2 − dx1) (3.3.8)

where

R m
l =

∂xm

∂ξ l
and (R−1)

i
j =

∂ξ i

∂xj
. (3.3.9)

Since R is a rotation, the metric tensor does not change and we have gij = g̃ij = δij. We

can rewrite equation (3.3.3) in the new coordinate system as

gij∂iM
l
j ∂lp = ∂iM

ij∂jp = −q −→ ∂̃iM̃
ij∂̃j p̃ = −q̃, (3.3.10)

where p̃(ξ i) := p(xj(ξ i)) and q̃(ξ i) := q(xj(ξ i)). The tensor transforms according to

M̃ij = (R−1)
i
k(R

−1)
j
lM

kl ⇔ M̃ = R−1MR =
1

2

(

ã+ a ã− a

ã− a ã+ a

)

(3.3.11)

where a and ã are now functions of (ξ1, ξ2). Finally, we can cast equation (3.3.3) into

∂̃1M̃
11∂̃1 p̃+ ∂̃1M̃

12∂̃2 p̃+ ∂̃2M̃
21∂̃1 p̃+ ∂̃2M̃

22∂̃2 p̃ = −q̃ (3.3.12)

together with the definitions made in equation (3.3.11) and equation (3.3.7).

3.3.2 Discretization of the pressure equation

For both coordinate systems, the pressure equation has the same form as equation (3.3.10).

However, the derivatives and tensors are defined with respect to the underlying coordi-

nate system. We only present the discretization in the (ξ1, ξ2)-coordinate system, as it is

the more general case and from which the other follows easily. We use central difference

operators to approximate the spatial derivatives at the cell centres:

(∂̃1 p̃)ij =
p̃i+ 1

2 j
− p̃i− 1

2 j

∆ξ
+O(∆ξ2) (3.3.13)

(∂̃2 p̃)ij =
p̃ij+ 1

2
− p̃ij− 1

2

∆ξ
+O(∆ξ2), (3.3.14)
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where ∆ξ =
√
2∆x, and the mesh spacing is the same in both dimensions. Applying

these operators to the second term in equation (3.3.12) yields

∂̃1M̃
12∂̃2 p̃ ≃ 1

∆ξ

[

M̃12
i+ 1

2 j

1

∆ξ
( p̃i+ 1

2 j+
1
2
− p̃i+ 1

2 j− 1
2
)− M̃12

i− 1
2 j

1

∆ξ
( p̃i− 1

2 j+
1
2
− p̃i− 1

2 j− 1
2
)

]

.

Continuing analogously for the other terms, leads, after reordering, to

p̃i+1jM̃
11
i+ 1

2 j
+ p̃i−1jM̃

11
i− 1

2 j
+ p̃ij+1M̃

22
ij+ 1

2
+ p̃ij−1M̃

22
ij− 1

2
(3.3.15)

− p̃ij

(

M̃11
i+ 1

2 j
+ M̃11

i− 1
2 j
+ M̃22

ij+ 1
2
+ M̃22

ij− 1
2

)

+ p̃i+ 1
2 j+

1
2

(

M̃12
i+ 1

2 j
+ M̃21

ij+ 1
2

)

− p̃i− 1
2 j+

1
2

(

M̃21
ij+ 1

2
+ M̃12

i− 1
2 j

)

− p̃i+ 1
2 j− 1

2

(

M̃12
i+ 1

2 j
+ M̃21

ij− 1
2

)

+ p̃i− 1
2 j− 1

2

(

M̃12
i− 1

2 j
+ M̃21

ij− 1
2

)

+O(∆ξ2) = −q̃ij∆ξ2.

The final step is to associate p̃kl with pij, and to define the nine coefficients of the stencil.

Although the half-indices in equation (3.3.15) suggest that we need interpolated pressure

values at the vertices, only cell centred values are required, as illustrated in Fig. 3.5. If we

were to apply the same approximation to a full tensor in (x1, x2)-coordinates, we would

need values at the vertices. This will become apparent when discretizing the dispersion

term in §3.6. However, we need the components of the mobility tensor at the vertices.

Therefore, we calculate the harmonic averages of the functions a and ã at the cell vertices

and build the linear combinations defined in equation (3.3.11).

The order of the discretization error is the same in both coordinate systems, since ∆x2 ∝

∆ξ2. However, the spacing is bigger in the rotated coordinate system, which has an

influence on our choice of the weighting factor ν in Fig. 3.3b. From Fig. 3.5, we can see

that the relations

p̃i+1j = pi+1j+1, p̃i−1j = pi−1j−1, p̃ij+1 = pi−1j+1,

p̃i− 1
2 j− 1

2
= pij−1, p̃i+ 1

2 j− 1
2
= pi+1j, p̃i+ 1

2 j+
1
2
= pij+1,

p̃i− 1
2 j+

1
2
= pi−1j, p̃ij−1 = pi+1j−1, p̃ij = pij,

hold. Although we omitted the indices for the nine coefficients NW , N , NE , W , C,
E , SW , S and SE in Fig. 3.5, those quantities vary in space. Thus, for every cell (i, j)

in {0, ..., N1 − 1} × {0, ..., N2 − 1}, we have to recalculate the coefficients that define the

linearized equation for that cell. If all eight neighbours are available, this equation can

be written as

NW ij pi−1j+1 +Nij pij+1 +NE ij pi+1j+1 +Wij pi−1j + Cij pij + Eij pi+1j (3.3.16)

+SW ij pi−1j−1 + Sij pij−1 + SE ij pi+1j−1 = −qij + bij
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p̃i+1j = pi+1j+1

p̃ij−1 = pi+1j−1

p̃i+ 1
2 j− 1

2
= pi+1j

p̃i+ 1
2 j+

1
2
= pij+1

p̃ij = pij

p̃i− 1
2 j− 1

2
= pij−1

p̃ij+1 = pi−1j+1

p̃i− 1
2 j+

1
2
= pi−1j

p̃i−1j = pi−1j−1

x1

x2

ξ1ξ2

NENW N

SESW S

EW C
∆x

∆ξ

Figure 3.5: Illustration of the approximation given by equation (3.3.15).

with bij = 0, i.e. no boundary corrections are necessary. However, for the cell layer for

which the edges coincide with the boundary, the stencil requires points outside of the

domain, which are missing. Specification of either pressure values (Dirichlet conditions)

or gradients (Neumann conditions) on the domain boundary enable us to express the

missing values as linear functions of the available points inside the domain. This will be

explained in detail in §3.3.3. The coefficients in equation (3.3.16) are given by

NW ij =
(ã+ a)ij+ 1

2

2∆ξ2

Nij =
(ã− a)i+ 1

2 j
+ (ã− a)ij+ 1

2

2∆ξ2

NE ij =
(ã+ a)i+ 1

2 j

2∆ξ2

Wij = −
(ã− a)ij+ 1

2
+ (ã− a)i− 1

2 j

2∆ξ2

Cij = −
(ã+ a)i+ 1

2 j
+ (ã+ a)i− 1

2 j
+ (ã+ a)ij+ 1

2
+ (ã+ a)ij− 1

2

2∆ξ2
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Eij = −
(ã− a)i+ 1

2 j
+ (ã− a)ij− 1

2

2∆ξ2

SW ij =
(ã+ a)i− 1

2 j

2∆ξ2

Sij =
(ã− a)i− 1

2 j
+ (ã− a)ij− 1

2

2∆ξ2

SE ij =
(ã+ a)ij− 1

2

2∆ξ2

where we used equation (3.3.11) to replace the elements of the mobility tensor.

3.3.3 Incorporation of Neumann boundary conditions

For Neumann boundary conditions, we specify the pressure gradient on the domain

boundary. This can be expressed as

∂p

∂n
(x) = n(x) · ∇p(x) (3.3.17)

for x ∈ ∂Ω, where n is the outward pointing normal to the domain boundary. In order to

explain how this condition is satisfied, we first define some useful index ranges

I (interior): {(i, j) : 1 ≤ i ≤ N1 − 2, 1 ≤ j ≤ N2 − 2}
B (bottom): {(i, 0) : 1 ≤ i ≤ N1 − 2}
T (top): {(i,N2 − 1) : 1 ≤ i ≤ N1 − 2}
R (right): {(N1 − 1, j) : 1 ≤ j ≤ N2 − 2}
L (left): {(0, j) : 1 ≤ j ≤ N2 − 2}
CO (corners): {(0, 0), (N1 − 1, 0), (N1 − 1,N2 − 1), (0,N2 − 1)}

that are pairwise disjoint and satisfy I ∪ B ∪ T ∪ L ∪ R ∪ CO = Ω̃, with Ω̃ being our

discrete representation of Ω.

There are several ways to satisfy the boundary conditions. For the nine-point stencil, one

waywould be to extend the problem by one layer of ghost cells whose value is determined

by the boundary specifications. For example, we could leave the equation for cell (0, 0)

unmodified and extend equation (3.3.16) with

p−1,k = p0,k + ∆xp̂− 1
2 ,k

(3.3.18)

pk,−1 = pk,0 + ∆yp̂k,− 1
2

(3.3.19)

p−1,−1 = p0,0 + ∆ξ p̂− 1
2 ,− 1

2
(3.3.20)
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p0,0

p0,1

p−1,−1

p−1,1

p̂− 1
2 ,− 1

2

p̂− 1
2 ,1

∆x

∆ξ

missing neighbours

∂Ω

Figure 3.6: The neighbours p−1,1, p−1,0, p−1,−1, p0,−1 and p1,−1 are missing in equation (3.3.16)
for cell (0, 0). These values can be expressed by the derivative of p on the domain boundary ∂Ω,
which is denoted by p̂.

for k ∈ {0, 1}, where p̂ denotes the outward pointing normal component of the pres-

sure gradient. In this case, each of the terms bij in equation (3.3.16) would be zero for

(i, j) ∈ Ω̃. In addition to the N1 ×N2 equations for the points inside the domain, another

2(N1 +N2) + 4 equations would have to be solved. We can, however, eliminate these

additional equations by linearly combining them with equation (3.3.16). For cell (0, 0),

equation (3.3.16) becomes

NW0,0 p−1,1 +N0,0 p0,1 +NE0,0 p1,1 +W0,0 p−1,0 + C0,0 p0,0 + E0,0 p1,0 (3.3.21)

+SW0,0 p−1,−1 + S0,0 p0,−1 + SE0,0 p1,−1 = −q0,0 + b0,0

with b0,0 yet to be defined. Using equations (3.3.18)–(3.3.20), we can cast this into

(C0,0 +W0,0 + S0,0 + SW0,0) p0,0 + (E0,0 + SE0,0) p1,0 (3.3.22)

+(N0,0 +NW0,0) p0,1 +NE0,0 p1,1 = −q0,0 − ∆x(NW0,0 p̂− 1
2 ,1

+NE0,0 p̂− 1
2 ,0

)− ∆y(S0,0 p̂0,− 1
2
+ SE0,0 p̂1,− 1

2
)− ∆ξSW0,0 p̂− 1

2 ,− 1
2

with

b0,0 =− ∆x(NW0,0 p̂− 1
2 ,1

+NE0,0 p̂− 1
2 ,0

) (3.3.23)

− ∆y(S0,0 p̂0,− 1
2
+ SE0,0 p̂1,− 1

2
)− ∆ξSW0,0 p̂− 1

2 ,− 1
2
.
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In this case, the ghost cell values are not part of our solution vector p in equation (3.3.2).

We treated the most challenging case, setting up the equation for a corner cell, in the

same manner as in the previous example. The equations for the remaining cells (i, j) ∈
Ω̃ \ (I ∪ {(0, 0)}) are treated analogously. For the cells (i, j) ∈ B ∪ T ∪L∪R, only three

neighbouring cells are missing and the equations for the interior (i, j) ∈ I are given by

equation (3.3.16) with bij = 0.

Neumann boundary conditions define the solution up to an additive constant. We found

that this leads to a high condition number of ∼ 107 for a 10 × 10 grid. The condition

number of a numerical problem relates the change in the output to perturbations in the

input data [4]. A high condition number means that small perturbations in the input data

can have a strong effect on the solution. The situation can be improved by specifying the

gradient and the value of p for one cell. If we do this for cell (0, 0), we can regulate the

value of p with a parameter κ if the condition

κ = p0,0 + q0,0 (3.3.24)

is enforced simultaneously with equation (3.3.22). Again, we can linearly combine the

equations to get

(C0,0 +W0,0 + S0,0 + SW0,0 − 1) p0,0 + (E0,0 + SE0,0) p1,0 (3.3.25)

+(N0,0 +NW0,0) p0,1 +NE0,0 p1,1 = −κ − ∆x(NW0,0 p̂− 1
2 ,1

+NE0,0 p̂− 1
2 ,0

)− ∆y(S0,0 p̂0,− 1
2
+ SE0,0 p̂1,− 1

2
)− ∆ξSW0,0 p̂− 1

2 ,− 1
2

and only a single equation needs to be solved. This trick has a remarkable influence on

the condition number. For the same system it dropped to ∼ 102, making the system of

equations less sensitive to perturbations.

The final step is to weight the contributions of both stencils by ν, as illustrated in Fig. 3.3b.

Since the equations are linear, we can rewrite equation (3.3.2) as

(νA0 + (1− ν)A45)p = −(νq0 + (1− ν)q45) + (νb0 + (1− ν)b45) (3.3.26)

for ν ∈ [0, 1]where superscripts 0 and 45 denote the contributions from the unrotated and

rotated coordinate system, respectively. As for the RHS in equation (3.3.26) the evalua-

tion is straightforward. The system of equations (3.3.26) is solved with a preconditioned,

biconjugate gradient stabilized (BiCGSTAB) method, which is part of the lsolver pack-

age [1].
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3.4 CALCULATION OF THE VELOCITY

Once we have calculated the new pressure, pn+1, we use it to calculate the new veloc-

ity, un+1, as illustrated in Fig. 3.1. The velocity is proportional to the pressure gradient

and is defined by Darcy’s Law, equation (2.1.18) under the incompressibility condition,

equation (2.1.17). Our weighted formulation of the linear set of equations for the pres-

sure also requires a weighted calculation of the velocity contributions. More specifically,

if we were to calculate the velocity using the pressure gradient with respect to (x1, x2)-

coordinates only, we would not satisfy the gauge condition, equation (2.1.17). The correct

velocity is given by

u = νu0 + (1− ν)u45, (3.4.1)

taking into account both contributions. We start by transforming equation (2.1.17) to the

rotated coordinate system according to

u = −M∇p −→ ũ = −M̃∇̃ p̃ = −
(

M̃11∂̃1 p̃+ M̃12∂̃2 p̃

M̃21∂̃1 p̃+ M̃22∂̃2 p̃

)

. (3.4.2)

If we now apply the central difference operators, equations (3.3.13)–(3.3.14), this becomes

ũij = −∆ξ−1
[

M̃11
ij ( p̃i+ 1

2 j
− p̃i− 1

2 j
) + M̃12

ij ( p̃ij+ 1
2
− p̃ij− 1

2
)
]

(3.4.3)

ṽij = −∆ξ−1
[

M̃21
ij ( p̃i+ 1

2 j
− p̃i− 1

2 j
) + M̃22

ij ( p̃ij+ 1
2
− p̃ij− 1

2
)
]

(3.4.4)

carrying an O(∆ξ2) truncation error term. The calculation of u45
ij is carried out in three

steps:

1. Use equations (3.4.3)–(3.4.4) to calculate the velocities ũi− 1
2 j
, ũij− 1

2
and ũij+ 1

2
at the

cell vertices (see Fig. 3.7).

2. Transform the velocities back to (x1, x2)-coordinates using R as defined in equa-

tion (3.3.5):

ui− 1
2 j− 1

2
= Rũi− 1

2 j

ui− 1
2 j+

1
2
= Rũij+ 1

2
.

3. Take the average to get the components at the correct positions:

ui− 1
2 j
=

1

2

(

ui− 1
2 j− 1

2
+ ui− 1

2 j+
1
2

)

vij− 1
2
=

1

2

(

vi− 1
2 j− 1

2
+ vi+ 1

2 j− 1
2

)

.
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ξ1
ξ2

p̃ij+1

p̃i−1j

p̃ij

ũij+ 1
2

ũi− 1
2 j

ũij− 1
2

ui− 1
2 j

vij− 1
2

Figure 3.7: Calculation of the velocity contribution from the rotated coordinate system.

In summary, this procedure approximates the velocity

u = −ν

(

M11∂1p+ M12∂2p

M21∂1p+ M22∂2p

)

− (1− ν)R

(

M̃11∂̃1 p̃+ M̃12∂̃2 p̃

M̃21∂̃1 p̃+ M̃22∂̃2 p̃

)

(3.4.5)

to second-order in space, since the error terms have the same order in both coordinate

systems. In the rotated coordinate system, we use one-dimensional linear interpolation

to get the velocity at the desired positions (step 3 above). Given two velocities, u(xL) and

u(xR), we can calculate the mean value in the centre, xC, of the line connecting the points

xL and xR. Using Taylor expansion, we obtain

u(xL) = u(xC)− (∇u∆x)(xC) +O
(

2

∑
i,j=1

∆xi∆xj

)

u(xR) = u(xC) + (∇u∆x)(xC) +O
(

2

∑
i,j=1

∆xi∆xj

)

,

where ∆x = xC − xL = xR − xC and ∇u denotes the Jacobian of the velocity. By adding

these equations, it is easy to see that the interpolation step does not reduce the order of

the overall scheme.

3.5 LEVEL SET SOLVER

In this section we first describe what level set methods are, and subsequently show how

the level set function can be utilized to track the motion of an interface under an external

velocity field.
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3.5.1 Level set methods

Following Osher and Fedkiw [25], the basic idea of the level set method is to represent

and analyze the motion of an interface, Γ, bounding a region, Ω. The interface is defined

implicitly by the zero contour of a function Φ(x, t), the level set function, which is allowed

to change with time. Therefore, we can define Γ(t) := ∂Ω = {x|Φ(x, t) = 0}. Although

this approach can be generalized to any number of spatial dimensions, we focus on the

two-dimensional case. The sign of Φ(x, t) determines whether the point x lies inside

or outside the region Ω. Fig. 3.8 illustrates this with a simple example, in which Φ is

negative inside the circle, vanishes at the boundary, and is positive outside. We will

follow this convention throughout the report.

x

y

r = 1

Φ = x2 + y2 − 1 = 0

Φ > 0

Φ < 0

Ω

∂Ω

Figure 3.8: Implicit representation of a circle with radius 1 (redrawn from [25]). The level set
function Φ is negative inside the domain Ω, vanishes on the boundary, and is positive outside.

The level set function is not unique; for the example in Fig. 3.8, we would not lose any

information if we multiplied Φ(x, t) by an arbitrary positive constant. In addition to

defining the interior, the boundary and the exterior of a region, the level set function can

be chosen to allow the closest distance from a point to the interface to be determined. The

level set function corresponding to this choice satisfies the condition |∇Φ(x, t)| = 1 and

is known as a signed distance function. Here, we are interested only in the position of the

interface and make no further use of this property. Consequently, we do not need the

reinitialization as suggested in [14].

We now know how to represent our domain, but do not yet know how the interface
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changes under the influence of an external velocity field. Let u(x, t) = (u(x, t), v(x, t))T

denote the external, time-dependent velocity field. Each point must then satisfy the sys-

tem of ODEs

dx

dt
= u(x, t). (3.5.1)

The equation describing the evolution of the level set function in an external velocity field

u(x, t) is a linear advection equation,

∂Φ

∂t
+ u(x, t)∇Φ = 0. (3.5.2)

A commonly used approach is the so-called method of lines (MOL), where the discretiza-

tion is carried out in two steps. We first discretize the spatial derivative, but retain a

continuous time component:

∂Φij

∂t
= L(Φ(t)kl , t)ij. (3.5.3)

Subsequently, an ODE solver is employed to discretize the equation in time. For a good

approximation, it is important to take into account the direction from which information

arrives and choose the derivative operator L accordingly.

3.5.2 Level set scheme

In order to stabilize the concentration front (see §4.4), we try to track its time evolu-

tion accurately. Thus, we employ the fifth-order, finite difference weighted essentially

non-oscillatory (WENO) scheme of Jiang and Shu [15]. In their paper, they construct the

fifth-order derivative interpolation by combining three third-order interpolations with

appropriate weights. They choose the weights such that the total variation of the approx-

imation with respect to their measure of smoothness is minimized [15].

Discretizing in time, we can express L as

L(Φn
kl ,u

n
kl)ij = −unij XWENO5

ij (Φn
kl ,∆x, unij)− vnij YWENO5

ij (Φn
kl ,∆y, vnij) (3.5.4)

where XWENO5
ij and YWENO5

ij approximate the spatial derivatives to fifth-order. It is suffi-

cient to describe the reconstruction for only a single direction because the other is carried

out analogously.

XWENO5
ij (Φn

kl ,∆x, unij) =







WENO5(
Φi−2j−Φi−3j

∆x , ...,
Φi+2j−Φi+1j

∆x ) if unij > 0

WENO5(
Φi+3j−Φi+2j

∆x , ...,
Φi−1j−Φi−2j

∆x ) if unij < 0
(3.5.5)
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If we rename the five arguments of theWENO5 function to Ψi−2,Ψi−1,Ψi,Ψi+1,Ψi+2, the

reconstruction is given by

Ψ0 =
1

3
Ψi−2 −

7

6
Ψi−1 +

11

6
Ψi,

Ψ1 = −1

6
Ψi−1 +

5

6
Ψi +

1

3
Ψi+1,

Ψ2 =
1

3
Ψi +

5

6
Ψi+1 −

1

6
Ψi+2

and the final state is a linear combination of the form

WENO5(Ψi−2,Ψi−1,Ψi,Ψi+1,Ψi+2) = ω0Ψ0 + ω1Ψ1 + ω2Ψ2. (3.5.6)

The weights ωi, based on the smoothness of the solution, are

ωi =
αi

∑
3
i=1 αi

,

α0 = (ǫ + β0)
−2,

α1 = 6(ǫ + β1)
−2,

α2 = 3(ǫ + β2)
−2,

β0 =
13

12
(Ψi−2 − 2Ψi−1 + Ψi)

2 +
1

4
(Ψi−2 − 4Ψi−1 + 3Ψi)

2,

β1 =
13

12
(Ψi−1 − 2Ψi + Ψi+1)

2 +
1

4
(Ψi+1 − Ψi−1)

2,

β2 =
13

12
(Ψi − 2Ψi+1 + Ψi+2)

2 +
1

4
(3Ψi − 4Ψi+1 + Ψi+2)

2.

In practice, ǫ is set to 10−10 to avoid division by zero. The choice of time integration

scheme is limited by the velocity, which is only available at time tn. A simple choice is

forward Euler time integration:

Φn+1
ij = Φn

ij + ∆tL(Φn
kl ,u

n
kl)ij, (3.5.7)

where the velocity is assumed to be constant for each integration step. This method is

only first-order accurate in time. In fact, this fifth-order WENO scheme is proven to

be unstable in combination with forward Euler time integration [35]. However, these

instabilities have not been seen in the current work.

3.6 HYPERBOLIC SOLVER

After calculating the velocity from the pressure field, all of the initial data for solving

the advection-diffusion equation (2.1.16) in Fig. 3.1 are available. Using operator splitting
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allows for solving this equation with methods suitable for the individual components.

Many sophisticated methods are available for solving homogeneous conservation laws,

parabolic equations and ODEs. This approach might be preferable to deriving an unsplit

method for complex problems [22]. Therefore, we split equation (2.1.16) into three sepa-

rate problems with different input data.

∂
∂t c+∇ · (cu)−∇ ·D∇c = ĉq →



















∂
∂t c+∇ · (cu) = 0 HYPERBOLIC

∂
∂t c = ĉq ODE

∂
∂t c = ∇ ·D∇c PARABOLIC

(3.6.1)

In equation (3.6.1), and throughout the rest of this report, we only consider porosity equal

to unity. However, the scheme would not change for different levels of porosity.

3.6.1 Splitting scheme

We will illustrate the idea of operator splitting, or the fractional-step method, following

LeVeque [22]. Let us consider a linear PDE in one spatial dimension, of the form

qt = (M+N )q, (3.6.2)

where M and N are, e.g., differential operators that do not explicitly depend on t. Then

we can write the exact solution formally as

q(x,∆t) = e∆t(M+N )q(x, 0). (3.6.3)

Employing the method of fractional-steps, we can split equation (3.6.3) and solve

q∗(x,∆t) = e∆tMq(x, 0) (3.6.4)

q∗∗(x,∆t) = e∆tN q∗(x,∆t) = e∆tN e∆tMq(x, 0) (3.6.5)

instead. From this we can see that q∗∗ and q differ if the operators M and N do not

commute. In general, this splitting scheme is only first-order accurate in time. However,

given that both operators are second-order, modifying it slightly to

q∗∗(x,∆t) = e
∆t
2 N e∆tMe

∆t
2 N q(x, 0) (3.6.6)

leads to a second-order scheme, called Strang’s splitting. Following [32], another second-

order scheme is given by:

q∗∗(x,∆t) =
1

2

(

e∆tMe∆tN + e∆tN e∆tM
)

q(x, 0). (3.6.7)
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cn

cn+1

Input: cn

S 1
2 ∆t → ∂

∂t
c = ĉq

Output: c(1)

Input: c(1), un

D 1
2 ∆t → ∂

∂t
c = ∇ ·D∇c

Output: c(2)

Input: c(2), un

A∆t → ∂

∂t
c+∇ · (cu) = 0

Output: c(3)

Input: c(4)

S 1
2 ∆t → ∂

∂t
c = ĉq

Output: cn+1

Input: c(3), un

D 1
2 ∆t → ∂

∂t
c = ∇ ·D∇c

Output: c(4)

Figure 3.9: Splitting scheme: S∆t solves the ODE in (3.6.1), D∆t the parabolic part and A∆t the
hyperbolic part.

We refer to this scheme as symmetric splitting. Employing a second-order splitting scheme

will only lead to a second-order method for the original equation if all of the operators in-

volved are second-order accurate [22]. Furthermore, the second-order splitting schemes,

equations (3.6.6) and (3.6.7) are more expensive computationally [32].

At the moment, the operator S (see Fig. 3.9) is second-order accurate in time. The CTU

scheme (§3.6.2.5) and the Upwind scheme (§3.6.2.1) are first-order accurate in time, while

the MUSCL scheme (§3.6.2.2) and the WAF scheme (§3.6.2.4) are second-order accurate.

The first-order splitting given by equation (3.6.5) is employed for the first-order schemes

(see Fig. 3.10) and Strang’s splitting given by equation (3.6.6) is employed for the second-

order schemes (see Fig. 3.9). The same splitting is applied for the operator D, but since

D is only first-order accurate, all of the combinations reduce to first-order accuracy in

time. Nevertheless, employing second-order splitting for the source term still yields an

improvement.
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cn

cn+1

Input: cn, un

A∆t → ∂

∂t
c+∇ · (cu) = 0

Output: c(1)

Input: c(1)

S∆t → ∂

∂t
c = ĉq

Output: c(2)

Input: c(2), un

D∆t → ∂

∂t
c = ∇ ·D∇c

Output: cn+1

Figure 3.10: Splitting scheme: S∆t solves the ODE in (3.6.1), D∆t the parabolic part and A∆t the
hyperbolic part.

If we define operators that solve the ODE in equation (3.6.1) (S∆t), the parabolic part

(D∆t) and the hyperbolic part (A∆t), our second-order splitting scheme can be written as

cn+1 = H∆tcn with (3.6.8)

H∆t = S 1
2 ∆tD 1

2 ∆tA∆tD 1
2 ∆tS 1

2 ∆t, (3.6.9)

and the first-order splitting as

cn+1 = H∆tcn with (3.6.10)

H∆t = A∆tD∆tS∆t. (3.6.11)

The individual components are explained in detail in the following sections.

3.6.2 Advection equation

The advection equation in equation (3.6.1) can be cast into a conservation law of the form

Qt + f (Q)x + g(Q)y = 0 (3.6.12)

with Q = c, f (Q) = uQ and g(Q) = vQ. In this report, we solve this equation with

various finite volume schemes. In the finite volume approach, the states representing cell

averages are updated according to the conservative update formula either in an unsplit
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or split manner [32]:

UNSPLIT

{

Qn+1
ij = Qn

ij − ∆t
∆x (Fn

i+ 1
2 j
−Fn

i− 1
2 j
)− ∆t

∆y (Gn
ij+ 1

2

− Gn
ij− 1

2

) (3.6.13)

SPLIT











Q∗
ij = Qn

ij − ∆t
∆x (Fn

i+ 1
2 j
−Fn

i− 1
2 j
)

Qn+1
ij = Q∗

ij − ∆t
∆y (G∗

ij+ 1
2

− G∗
ij− 1

2

).
(3.6.14)

In the latter case, the order is not necessarily the same as illustrated here. Any of the

splitting schemes introduced in §3.6.1 can be employed. However, not all of them are

symmetric. In order to preserve the symmetry of the problem, we therefore employ

symmetric splitting for the split schemes. Each of the following schemes uses the con-

servative update formula and only differs in the way the fluxes are calculated. For the

split schemes, we only consider the one dimensional case, since the two dimensional case

follows analogously.

3.6.2.1 GODUNOV’S FIRST ORDER UPWIND SCHEME (SPLIT)

Although an unsplit version of this scheme exists [32], we are interested in the split

version because this will be utilized by the more advanced weighted average flux (WAF)

scheme. Thus, we split the two-dimensional problem into two one-dimensional prob-

lems similar to equation (3.6.14) and consider only the one dimensional-case

Qt + f (Q)x = 0. (3.6.15)

The intercell fluxes are computed using the solutions of local Riemann problems: equa-

tion (3.6.12) must be solved at each intercell boundary for a piecewise constant distri-

bution at the time level n in order to evolve the solution in time [32]. Let ai− 1
2
be the

velocity at the interface. The exact solution of the local Riemann problem RP(Qn
i−1,Q

n
i ) is

then given as [32]

Qi− 1
2
(x/t) =







Qn
i−1 if x/t < ai− 1

2
,

Qn
i if x/t > ai− 1

2
.

(3.6.16)

With the solutions of the two Riemann problems RP(Qn
i−1,Q

n
i ) and RP(Qn

i ,Q
n
i+1), Go-

dunov defined the updated solution, Qn+1
i , as the integral average

Qn+1
i =

1

∆x

(

∫ 1
2 ∆x

0
Qi− 1

2
(x/∆t)dx+

∫ 0

− 1
2 ∆x

Qi+ 1
2
(x/∆t)dx

)

. (3.6.17)

With this notation, ∆t is the local time in the Riemann problems’ own frame of reference.

The integrals can be evaluated by using equation (3.6.16), and equation (3.6.17) can be
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cast into the form of equation (3.6.14) by choosing the intercell flux

FG
i− 1

2
:= f (Qi− 1

2
(0)) =







ai− 1
2
Qn

i−1 if ai− 1
2
> 0,

ai− 1
2
Qn

i otherwise.
(3.6.18)

This scheme is stable if and only if the CFL number

c =
a ∆t

∆x
(3.6.19)

satisfies |c| ≤ 1, where a is the maximum speed. Furthermore, it is first-order accurate in

both space and time [32].

3.6.2.2 MUSCL-HANCOCK SCHEME (SPLIT)

In this section we explain the modified upwind scheme for conservation laws (MUSCL). Fol-

lowing [32], the motivation for this approach is to a reach higher order of accuracy

through reconstruction of the data. Before, Qn
i was defined as the integral average over

the control volume. This lead to a piecewise constant distribution of the data to be ad-

vanced in time. One possible high-order extension is achieved by linearly interpolating

the data with a function

Qi(x) := Qn
i +

(x− xi)

∆x
∆i (3.6.20)

where x ∈ [0,∆x] and xi denotes the centre of the cell. One possible choice is

∆i =
1

2
(1+ ω)∆Qi− 1

2
+

1

2
(1− ω)∆Qi+ 1

2
, (3.6.21)

where

∆Qi− 1
2
:= Qn

i −Qn
i−1, ∆Qi+ 1

2
:= Qn

i+1 −Qn
i (3.6.22)

and ω ∈ [−1, 1] is a free parameter. In these local coordinates, x = 1
2∆x corresponds

to the centre, xi, of the cell and thus Qi(xi) = Qn
i . Using this linear function, we can

extrapolate the values to the boundaries to get the two states

QL
i := Qi(0) = Qn

i −
1

2
∆i, QR

i := Qi(∆x) = Qn
i +

1

2
∆i. (3.6.23)

In the vicinity of discontinuities it proves advantageous to adapt the slope so obtained.

This can be done by introducing a slope-limiter function ξi, in order to satisfy the total

variation diminishing (TVD) property [32], so that

∆i = ξi∆i. (3.6.24)



33

A scheme which is TVD will not introduce new local extrema and hence no spurious

oscillations, since this would increase the total variation [32]. The limiter function takes

an argument r defined by

r =
Qn

i −Qn
i−1

Qn
i+1 −Qn

i

(3.6.25)

as a measure of the flow. One possible choice is the van Leer-type slope limiter function

ξlb(r) =







0 if r ≤ 0,

min
(

2r
1+r , ξR(r)

)

otherwise,
(3.6.26)

where ξR(r) := 4[(1− c)(1−ω + (1+ω)r)]−1 and c is the CFL number [32]. The intercell

flux for the MUSCL-Hancock scheme can now be calculated in three steps. First, QL
i and

QR
i are calculated with the updated slope for all cells:

QL
i = Qn

i −
1

2
∆i, QR

i = Qn
i +

1

2
∆i. (3.6.27)

Second, QL
i and QR

i are evolved by a time 1
2∆t, according to

Qi
L
:= QL

i +
1

2

∆t

∆x

[

f (QL
i )− f (QR

i )
]

(3.6.28)

Qi
R
:= QR

i +
1

2

∆t

∆x

[

f (QL
i )− f (QR

i )
]

. (3.6.29)

Finally, FM
i− 1

2

is computed by applying the flux function f to the solution of the Riemann

Problem RP(Q
R
i−1,Q

L
i ). This scheme is second-order accurate, and is stable provided the

CFL number satisfies |c| ≤ 1 for any ω ∈ [−1, 1] [32]. In this report we choose ω to be

zero.

3.6.2.3 WAF SCHEME (SPLIT)

Reconstructing the initial data is oneway to get a second-order method for the solution of

equation (3.6.15). Another approach is to employ a better approximation of the intercell

flux, by averaging the flux function over a certain control volume. Following [32], the

general formula of a WAF-type flux for a cell [x1, x2]× [t1, t2] in the x-t plane is

FW
i− 1

2
=

1

t2 − t1

1

x2 − x1

∫ t2

t1

∫ x2

x1
f (Q̃i− 1

2
(x, t)) dx dt, (3.6.30)

where Q̃i− 1
2
(x, t) is the solution of a particular initial value problem. In order to obtain the

original WAF-flux, the integration limits are first chosen to be t1 = 0, t2 = ∆t, x1 = − 1
2∆x

and x2 = 1
2∆x and then Q̃i− 1

2
(x, t) is defined to be the solution of the Riemann problem
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RP(Qn
i−1,Q

n
i ). The approximation of the time integral in equation (3.6.30) by themidpoint

rule yields

FW
i− 1

2
=

1

∆x

∫ x2

x1
f

(

Q̃i− 1
2

(

x,
1

2
∆t

))

dx, (3.6.31)

provided ∆t is such that |c| ≤ 1. Carrying out the spatial integration in equation (3.6.31),

and using a limiter so that the scheme is TVD, yields

FW
i− 1

2
:=

1

2
(1+ sign(ci− 1

2
)Φi− 1

2
)(ai− 1

2
uni−1) +

1

2
(1− sign(ci− 1

2
)Φi− 1

2
)(ai− 1

2
uni ) (3.6.32)

where Φi− 1
2
is a limiter function and ci− 1

2
is the local CFL number calculated using the

velocity ai− 1
2
in equation (3.6.19) [32]. A possible choice for a WAF-type limiter is the van

Leer limiter function

Φi− 1
2
(r) = 1− (1− |ci− 1

2
|)Bvl(r) (3.6.33)

with

Bvl(r) =







0 if r ≤ 0,

2r(1+ r)−1 otherwise
(3.6.34)

and

r =











Qn
i−1−Qn

i−2
Qn

i −Qn
i−1

if ci− 1
2
> 0,

Qn
i+1−Qn

i
Qn

i −Qn
i−1

otherwise.
(3.6.35)

3.6.2.4 WAF SCHEME (UNSPLIT)

Instead of solving two one-dimensional problems of the form (3.6.15) and updating the

states sequentially with equation (3.6.14), we now want to calculate the fluxes F and G
for both directions and carry out the update in one step with equation (3.6.13). Follow-

ing [32], we define two operators

LGs, dt(Z
n) := Zn +

dt

∆s

[

KG
l− 1

2
− KG

l+ 1
2

]

(3.6.36)

LWs, dt(ZL,ZR) :=
1

∆s

∫ 1
2 ∆s

− 1
2 ∆s

f
(

ZLR

( s

dt

))

ds. (3.6.37)

The first operator evolves the state Zn in time by employing the upwind flux as defined

in equation (3.6.18), here denoted by K, in the direction s. The second operator gives a

WAF-type flux, as defined by equation (3.6.32), by calculating the integral average of a

flux f in the s-direction, normal to the interface. The argument ZLR is the solution to the

Riemann problem RP(ZL, ZR). Applying these operators sequentially yields the fluxes

FUW
i− 1

2 j
:= LW

x, 1
2 ∆t

(

LG
y, 1

2 ∆t
(Qn

i−1j), L
G
y, 1

2 ∆t
(Qn

ij)
)

(3.6.38)

GUW
ij− 1

2
:= LW

y, 1
2 ∆t

(

LG
x, 1

2 ∆t
(Qn

ij−1), L
G
x, 1

2 ∆t
(Qn

ij)
)

, (3.6.39)
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as required by the unsplit conservative update formula, equation (3.6.13). This method

is second-order accurate in space and time. It is stable if max (cx, cy) ≤ 1, where cs is

defined by equation (3.6.19) with the corresponding velocities [32].

3.6.2.5 CTU SCHEME

The previously defined split methods do not necessarily retain all the information about

the directionality of the flow. One of the schemes that does take into account diagonal

transport is the corner-transport upwind (CTU) scheme of Colella. This scheme is first-

order accurate in space and time [22]. Thewave propagationmethod of LeVeque [22], can

reproduce the CTU scheme when applied to the linear advection equation. In this section,

we briefly explain the wave propagation formulation of the CTU scheme. We choose

this formulation because LeVeque also suggests correction terms to make it fully second-

order accurate [21], which might be of interest for further investigations. Explaining the

method in detail is beyond the scope of this report and the reader is referred to [21] for

a detailed discussion. We merely want to illustrate the idea by the example given in

Fig. 3.11.

In this example, we assume positive velocities, u > 0 and v > 0, and first consider

the interface between Qi−1j and Qij (solid red line). In the upwind scheme we assume

that there is only a single wave, which propagates into cell Qij. However, this cell also

affects Qij+1, as illustrated by the shaded area in Fig. 3.11. More precisely, it affects the

flux transverse to the interface between Qi−1j and Qij, leading to a correction denoted by

G̃ij+ 1
2
. Likewise, the interface between Qij−1 and Qij (solid blue line) has an effect on the

flux Fi+ 1
2 j
. Before presenting the intercell fluxes, we consider a scalar quantity λ, and

define

λ+ := max(λ, 0) , λ− := min(λ, 0). (3.6.40)

At the beginning of each time step, we first initialize the flux corrections F̃i+ 1
2 j
and G̃ij+ 1

2

to zero everywhere. Subsequently, we add all the contributions from the neighbouring

cells, which can be written as

F̃i− 1
2 j−1 := F̃i− 1

2 j−1 −
∆t

2∆y
u−
i− 1

2 j−1
v−
ij− 1

2

(Qij −Qij−1) (3.6.41)

F̃i+ 1
2 j−1 := F̃i+ 1

2 j−1 −
∆t

2∆y
u+
i+ 1

2 j−1
v−
ij− 1

2

(Qij −Qij−1)

F̃i− 1
2 j

:= F̃i− 1
2 j
− ∆t

2∆y
u−
i− 1

2 j
v+
ij− 1

2

(Qij −Qij−1)

F̃i+ 1
2 j

:= F̃i+ 1
2 j
− ∆t

2∆y
u+
i+ 1

2 j
v+
ij− 1

2

(Qij −Qij−1)
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Figure 3.11: Correction of the fluxes Fi+ 1
2 j
and Gij+ 1

2
(redrawn from [22] and modified).

and

G̃i−1j− 1
2
:= G̃i−1j− 1

2
− ∆t

2∆x
v−
i−1j− 1

2

u−
i− 1

2 j
(Qij −Qi−1j) (3.6.42)

G̃i−1j+ 1
2
:= G̃i−1j+ 1

2
− ∆t

2∆x
v+
i−1j+ 1

2

u−
i− 1

2 j
(Qij −Qi−1j)

G̃ij− 1
2
:= G̃ij− 1

2
− ∆t

2∆x
v−
ij− 1

2

u+
i− 1

2 j
(Qij −Qi−1j)

G̃ij+ 1
2
:= G̃ij+ 1

2
− ∆t

2∆x
v+
ij+ 1

2

u+
i− 1

2 j
(Qij −Qi−1j)

where := denotes an update in this case [22]. Finally, the fluxes for the wave propagation

method are defined by

FWP
i− 1

2 j
:= FG

i− 1
2 j
+ F̃i− 1

2 j
(3.6.43)

GWP
ij− 1

2
:= GG

ij− 1
2
+ G̃ij− 1

2
(3.6.44)

and the scheme is stable for max (cx, cy) ≤ 1 [22].

3.6.3 Source term

For solving the ODE in equation (3.6.1), we use the trapezoidal rule. Consider a system

of ODEs
∂y

∂t
= f(t, y), t ≥ 0, (3.6.45)
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where y ∈ R
N and the function f : R × R

N → R. The trapezoidal rule is then given

by [4]

yn+1 = yn +
1

2
∆t
[

f(tn, yn) + f(tn+1, yn+1)
]

(3.6.46)

with initial conditions y0 := y(t = 0) and tn = n∆t . This scheme is the second-order

A-stable method with the smallest truncation error. A-stability implies that it is not nec-

essary to decrease the time step for stability but only for accuracy [4]. Applying the

trapezoidal rule to our system yields

cn+1
ij =



















cnij(1+
1
2∆tqij)(1− 1

2∆tqij)
−1

if qij < 0,

cnij + ∆tqij if qij > 0,

cnij otherwise,

(3.6.47)

which is in explicit form.

3.6.4 Parabolic equation

In this section we approximate an equation of the form

∂

∂t
c = ∇ ·

(

d11 d12

d21 d22

)

∇c (3.6.48)

where the elements of the tensor satisfy dkk ≥ 0 for k = 1, 2 and d21 = d12. Assuming

square grid cells and applying the method of lines, we approximate the spatial deriva-

tives with central differences as defined in equation (3.3.13). Subsequently using forward

Euler time integration yields

cn+1
ij = cnij +

∆t

∆x2

[

d11
i+ 1

2 j
(cni+1j − cnij) + d12

i+ 1
2 j
(cn

i+ 1
2 j+

1
2
− cn

i+ 1
2 j− 1

2
) (3.6.49)

−d11
i− 1

2 j
(cnij − cni−1j)− d12

i− 1
2 j
(cn

i− 1
2 j+

1
2
− cn

i− 1
2 j− 1

2
)

+d21
ij+ 1

2
(cn

i+ 1
2 j+

1
2
− cn

i− 1
2 j+

1
2
) + d22

ij+ 1
2
(cnij+1 − cnij)

−d21
ij− 1

2
(cn

i+ 1
2 j− 1

2
− cn

i− 1
2 j− 1

2
)− d22

ij− 1
2
(cnij − cnij−1)

]

,

where

ci− 1
2 j− 1

2
=

1

4
(ci−1j−1 + ci−1j + cij + cij−1) (3.6.50)

is the arithmetic mean. Shubin and Bell [29] suggest using a rotationally invariant disper-

sion tensor of the form [29]

D =
αl

|u|

(

u2 uv

uv v2

)

+
αt

|u|

(

v2 −uv

−uv u2

)

(3.6.51)
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where the coefficients αl and αt regulate the magnitudes of longitudinal and transverse

dispersion [12]. With these coefficients we can define the longitudinal and transverse

Péclet numbers

Pel =
L

αl
and Pet =

L

αt
, (3.6.52)

respectively, where L is the distance between the corners of the injection and the produc-

tion well in Fig. 2.1a [12]. In our considerations, αl and αt are both of order O(∆x)which

implies that all the elements dkl are of order O(∆x).

The discretization given by equation (3.6.49) imposes a constraint on themaximum stable

time step. In order to estimate this time step, we require our method to be monotone. We

will follow [20] for the definition of a monotone method. Consider a numerical method

of the form Un+1
j = H(Un; j). This method is called a monotone method, if the property

Vn
j ≥ Un

j ∀j ⇒ Vn+1
j ≥ Un+1

j ∀j (3.6.53)

holds. In order to prove that a method has this property, it is sufficient to check that [20]

∂

∂Un
i

H(Un; j) ≥ 0 ∀ i, j,Un. (3.6.54)

Motivated by this one-dimensional definition, we try to derive a time step restriction by

requiring that

∂

∂cnij
H(cn; k, l) ≥ 0 ∀ i, j, k, l, cn (3.6.55)

holds, which is the same as requiring that all the coefficients of the values cnij in equa-

tion (3.6.49) are positive. The values dkl are of order O(∆x) and additionally they get

multiplied by ∆t
∆x2

. Thus, we can linearize dkl around the cell centre, because O(∆x2)

terms cancel out with the denominator and the product is of order O(∆t). Addition-

ally, we can replace the averages ci− 1
2 j− 1

2
by the corresponding cell centred values, which

yields

cn+1
ij = cnij +

∆t

∆x2

[

d11(cni+1j − 2cnij + cni−1j) + d22(cnij+1 − 2cnij + cnij−1) (3.6.56)

+
1

2
d12(cni+1j+1 − cni+1j−1 − cni−1j+1 + cni−1j−1)

]

,

where we employed the symmetry property of D. The last term in equation (3.6.56) is

again of orderO(∆x2) and therefore we can ignore it. All the coefficients are nonnegative

except for the one of cij. In order for the coefficient of cij to be nonnegative, the time step

has to satisfy the inequality

1− 2∆t

∆x2
(d11ij + d22ij ) ≥ 0 ∀ i, j. (3.6.57)
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Thus using the numerical dispersion tensor (3.6.51), the maximum stable time step for

this scheme is given by

∆tDmax = min
ij

∆x2

2(d11ij + d22ij )
= min

ij

∆x2

2
∣

∣uij

∣

∣ (αl + αt)
(3.6.58)

and depends on the magnitude of transverse and longitudinal diffusion.

3.6.5 Maximum stable time step

As outlined in the previous sections, the numerical schemes impose restrictions on the

time step. More specifically, the advection equation and the parabolic equation require

the time step to be of the same order as the spatial resolution, i.e. ∆t ∝ ∆x. We assume

that the integration of the source term does not impose a time step restriction because

the employed method is A-stable. Choosing a time step that is too big might lead to

oscillations and the numerical solution might become unstable. Employing a time step

that is too small can lead to a lot of time steps and hence to a long computation time.

Thus, we want to use an efficient time step that is slightly below the stability limit.

Recall that for two dimensions the time step restriction for the advection equation is

given by

∆tAmax = η min
ij

(

∆x
∣

∣uij
∣

∣

,
∆y
∣

∣vij
∣

∣

)

(3.6.59)

where η is the CFL number. We can then choose the time step to be

∆tmax = min(λ∆tDmax,∆tAmax) (3.6.60)

where λ is a positive parameter similar to the CFL number that should satisfy λ ≤ 1.

Obeying the time step restriction (3.6.60) guarantees that the time step satisfies all the

restrictions imposed by the set of split equations (3.6.1).

3.6.6 Convergence tests

Since we do not have a test problem with an analytical solution for the underlying set of

equations (2.1.16)–(2.1.18), we validate the hyperbolic and elliptic solvers independently

from each other.

3.6.6.1 HYPERBOLIC EQUATION

The hyperbolic part is tested by fully advecting an initial profile diagonally across the

domain using periodic boundary conditions. The profile is chosen such that it is smooth



40

with respect to the boundary conditions. This is satisfied by

f (x, y) = 1+ sin(2πx) sin(2πy) (3.6.61)

for (x, y) ∈ [0, 1]× [0, 1]. Each cell is initialized with the exact cell average

1

∆x2

∫ xi+
∆x
2

xi− ∆x
2

dx
∫ yi+

∆x
2

yi− ∆x
2

dy f (x, y) =1+
1

4π2∆x2
× (3.6.62)

[

cos
[

2π(xi +
∆x

2
)
]

− cos
[

2π(xi −
∆x

2
)
]

]

[

cos
[

2π(yi +
∆x

2
)
]

− cos
[

2π(yi −
∆x

2
)
]

]

where (xi, yi) denotes the cell centre and we assume equal grid spacing in both dimen-

sions.

3.6.6.2 PRESSURE EQUATION

In order to test the elliptic solver, we employ the method of manufactured solutions. In

this approach, one specifies the solution and arranges the remaining terms so that the

equation is satisfied. The designed solution should satisfy no-flow boundary conditions,

which means that the gradient should vanish at the boundary. We can make an Ansatz

φ(x, y) = cos(x) cos(y) (3.6.63)

and easily verify that

∂xφ(0, y) = 0 , ∂xφ(2π, y) = 0 and ∂yφ(x, 0) = 0 , ∂yφ(x, 2π) = 0 (3.6.64)

hold for a domain [0, 2π]× [0, 2π]. Plugging this function into the RHS of the pressure

equation (3.3.3) yields

−∇ · K

µ(0)
∇φ =

[

sin(x) cos(y)∂xa+ cos(x) sin(y)∂y ã+ (3.6.65)

cos(x) cos(y)(a+ ã)
]

=: q(x, y) (3.6.66)

if we take the concentration to be zero. The diagonal entries of the permeability tensor

are chosen to be

a(x, y) = µ(0)−1 [2+ sin(2x) sin(y)] (3.6.67)

ã(x, y) = µ(0)−1 [2+ sin(x) sin(2y)] (3.6.68)

and the velocity is given by

u(x, y) =

(

a(x, y) sin(x) cos(y)

ã(x, y) cos(x) sin(y)

)

. (3.6.69)
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3.6.6.3 CONVERGENCE RESULTS

Whether a numerical solution converges at all as well as the rate of convergence is de-

pending on the choice of the norm [22]. The L1-norm is a suitable choice for conservation

laws [22]. Therefore, the presented convergence studies are carried out with respect to

the L1-norm, which is given by

L1(e) = ∆x∆y∑
ij

∣

∣eij
∣

∣ (3.6.70)

for the discrete grid function e. The results are presented in Figs. 3.12 and 3.13, respec-

tively.

Figure 3.12: Results for the convergence test for the hyperbolic solver; k denotes the slope of the
corresponding linear fit; settings: ∆x = ∆y, resolution: N = 50× 2k for k = 0, ..., 4, parallel splitting
for split schemes, η = 0.9.
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Figure 3.13: Results for the convergence test for the elliptic solver; k denotes the slope of the corre-
sponding linear fit, u and p denote velocity and pressure for the nine-point stencil, respectively; u0

and p0 denote velocity and pressure for the unrotated five-point stencil; u45 and p45 denote veloc-
ity and pressure for the rotated five-point stencil; settings: ∆x = ∆y, resolution: N = 25× 2k for
k = 0, ..., 4; tolerance for the relative error (conjugate gradient method): 10−10.
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Numerical results

The wide range of parameters makes it necessary to focus on specific aspects rather than

trying to cover all interesting phenomena of miscible displacement. As outlined in §2.1.2,

the flow is destabilized by two dimensionless parameters, the Péclet number Pe and

the mobility ratio M. Considerable attention has been paid to their influence on the

solution in previous work. However, the resolutions being investigated were, apart from

a few exceptions [8, 5, 37], lower than 100× 100 cells. It is well known that numerical

diffusion-dispersion only hides the effects of grid orientation up to certain resolutions [3].

Therefore, it is disappointing that even some of the more recent work does not show

results for resolutions higher than 100× 100 cells [17, 19].

A very detailed high-resolution study of miscible displacement in the quarter five-spot

configuration was carried out by Chen and Meiburg [5], where the authors investigate

the influence of Pe and M with resolutions of up to 1024× 1024 cells using a high-order

implicit method. The same authors compare their numerical results with actual experi-

ments in Petitjeans et al. [26]. Unfortunately, in neither of the two papers do they compare

the solutions obtained for the parallel and diagonal configuration. This raises the ques-

tion up to what extent they were able to eliminate the GOE. Furthermore, they model the

dependence of the effective viscosity on the concentration of the injected fluid differently.

In this report we only consider one fixed mobility ratio which is high enough to destabi-

lize the flow. For the schemes discussed in the previous chapter, we try to determine the

minimum amount of dispersion necessary to stabilize the flow for resolutions of up to

200× 200 and 283× 283 cells, respectively (see §4.3.3). These resolutions are comparable

to those used in recent simulations of thermal flow in porous media [34]. For some of the

schemes, we will present high-resolution results of 400× 400 and 566× 566 cells, respec-

tively, and demonstrate how the GOE becomes apparent as compared to results obtained

for lower resolutions. The time evolution of the error for the incompressibility condition,

as well as for the no-flow boundaries and mass conservation are presented in §4.3.4.

43
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In §4.4, we superimpose the level set function onto the concentration field and show

how the initial interface develops over time. Additionally, we exploit the possibility of

partially stabilizing the front using level set information. We are not aware that this

approach has been considered in previous work.

From the range of hyperbolic schemes investigated in this study, only the CTU scheme

and the MUSCL scheme turned out to be stable for our splitting approach. In this setting,

both schemes are reliable even for a high CFL number of 0.99 in the case of Pel = Pet = ∞.

As soon as we add dispersion, this will impose limitations on the maximum stable time

step, as shown in §3.6.5. We found that the upwind scheme and the WAF scheme do not

exhibit equally good stability properties and low CFL numbers were necessary for the

runs without dispersion. Reducing the CFL number to 0.2 gave an improvement, but

the overall error is likely due to a bug in the code or some numerical effect. Thus, we

decided to focus on the CTU scheme and MUSCL scheme and use the other schemes

only to demonstrate the effect.

As for the Péclet numbers, they change as we increase the resolution if we employ a

numerical dispersion tensor (see equation (3.6.52)). Keeping the Péclet numbers fixed

corresponds to physical dispersion. However, this is only meaningful if we take into

account the various length scales on which these phenomena happen in reality.

4.1 PARAMETERS

To be consistent, we use the same input parameters for all the simulations with the excep-

tion of the choice of scheme, spatial resolution and the magnitude of dispersion. These

parameters are presented in Tab. 4.1.

It is worth pointing out, that the CFL number has an effect on the solution [29]. Modified

equation analysis reveals that first-order methods are diffusive and second-order meth-

ods are dispersive [20]. Here this property refers to the fact that Fourier components

propagate at different speeds depending on the wave number. Thus running with a very

small time step can yield more diffusive results if the numerical scheme is diffusive itself.

In the context of grid orientation, employing the maximum stable time step might not

be favorable because numerical diffusion could improve the results. Some authors de-

cided to use a time step that corresponds to filling up one cell per time step [29]. We find

this is unnecessarily low and employ a time step corresponding to 90% of the maximum

stable time step. Using circular wells yields a lower maximum velocity as compared to

point sources. Thus, larger time steps can be employed for circular wells if advection is

limiting the time step. Since the high-resolution runs are computationally expensive, the
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comparison is carried out for circular wells only.

4.2 DEMONSTRATION OF THE GRID ORIENTATION EFFECT

Recall that due to the symmetric configuration of the wells we expect the same results

for the overlapping region of the diagonal and the parallel domain in Fig. 2.1a. In or-

der to compare the results for both configurations, the parallel solution is projected onto

the diagonal grid as illustrated in Fig. 2.2. Different resolutions are chosen for both con-

figurations to obtain the same grid spacing. In this section we first illustrate the GOE

as observed for the WAF scheme and the upwind scheme without numerical dispersion.

Subsequently, we demonstrate how the effects of grid orientation change as we increase

the magnitude of dispersion for the CTU scheme and the MUSCL scheme.

Let us first consider the solutions for the upwind scheme presented in Fig. 4.1a-b. The

fluid is injected in the left bottom corner and produced in the right top corner. Somehow

contrary to intuition, in the diagonal configuration the injected fluid starts spreading

towards the left top corner and right bottom corner initially. Later on in the simulationwe

can observe a trend towards the production well resulting in three major fingers. In the

parallel configuration the solution behaves like radial source flow early in the simulation

which is consistent with the observations of Chen and Meiburg [5]. Afterwards a single

finger starts forming and breakthrough is reached within the simulation time.

As for the WAF scheme, many fingers form in the diagonal configuration in Fig. 4.1c.

Since the scheme is second-order accurate and TVD, it exhibits little numerical disper-

sion as compared to the first-order scheme [6] and hence fingers can form more easily.

Furthermore, we can observe a stronger trend towards the production well in Fig. 4.1c

as compared to Fig. 4.1a. In the parallel configuration (Fig. 4.1d) several fingers merge to

form two major fingers that join at the production well. From Figs. 4.1a-d we can clearly

see, that the GOE as exhibited by these schemes does not allow for reliably solving the

underlying equations with respect to equivalent well configurations.

4.3 COMPARISON FOR CTU AND MUSCL

Having illustrated the GOE, we continue with the results for the CTU scheme and the

MUSCL scheme for various amounts of numerical dispersion. In §4.3.1 the effect be-

comes most apparent as we do not add numerical dispersion. Subsequently, we present

results for the numerical dispersion tensor employed by Shubin and Bell [29] in §4.3.2.
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Parameter Value Units Description

N varying Spatial resolution for each dimension yield-
ing a total number of N2 cells.

Ω [0,X]× [0,X] Physical domain.

X 1.0 |
√
2 l Edge length of the quarter five-spot domain

(diagonal | parallel).

L
√
2 l Distance between a pair of neighbouring in-

jection and production wells (diagonal | par-
allel).

I 1.0 | -1.0 l2t−1 Injection rate or volumetric flow rate (injec-
tion well | production well).

t f inal 0.4 t End time of the simulation which corre-
sponds to the injection of 40% of the total
pore volume.

ǫ 10−8 Relative tolerance of the elliptic solver de-
fined by |Ax− b| < ǫ |b|.

φ 1.0 Porosity of the porous medium.

ν 2
3 Weighting factor between the two stencils

for the elliptic solver as defined in equation
(3.3.26).

η 0.9∗ CFL number as defined in equation (3.6.59).
λ 0.9 Positive parameter limiting the maximum

diffusion time step as defined in equation
(3.6.60).

αl varying l Represents the magnitude of longitudinal
dispersion per average velocity magnitude.

αt varying l Represents the magnitude of transverse dis-
persion per average velocity magnitude.

µc̃ 41 ml−1t−1 Viscosity of the resident fluid.
µc 1 ml−1t−1 Viscosity of the injected fluid.
K diag(1, 1) l2 Permeability of the porous medium.
M 41 Mobility ratio.
Pet varying Transverse Péclet number.
Pel varying Longitudinal Péclet number.
well circular Well model as described in §2.3.
rC 0.05 | 0.07 l Cut-off radius for the circular well (diagonal

| parallel).

Table 4.1: Input parameters for the simulations; m denotes unit of mass, l unit of length and t unit
of time; ∗) for the upwind scheme and the WAF scheme we found it necessary to reduce the CFL
number to 0.2 for stability reasons.
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(a) upwind 100× 100 (diagonal) (b) upwind 141× 141 (parallel)

(c)WAF 100× 100 (diagonal) (d)WAF 141× 141 (parallel)

Figure 4.1: Demonstration of the GOE in the absence of dispersion (Pel = Pet = ∞); left column:
diagonal solutions; right column: parallel solutions.

Finally, we show some improved results for our new tensor with higher magnitudes of

dispersion in §4.3.3.

4.3.1 No numerical dispersion

Our first observation is that the shapes of the results change as we double the resolution

(Figs. 4.2a,c and 4.2b,d, respectively). This is why we forego calculating error norms with

respect to high-resolution runs. In Fig. 4.2a we can see the formation of three fingers,

where the central finger is more pronounced as compared to Fig. 4.1a. The central finger

splits into two when we increase the resolution (Fig. 4.2c).

Both parallel solutions exhibit three central fingers. In the lower resolution case, break-
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through is achieved through the outer fingers which join at the production well. Whereas

for higher resolution only the central finger reaches the production well and the side fin-

gers are less pronounced. The difference in the results between the two configurations is

considerable.

(a) CTU 100× 100 (diagonal) (b) CTU 141× 141 (parallel)

(c) CTU 200× 200 (diagonal) (d) CTU 283× 283 (parallel)

Figure 4.2: Results for the CTU scheme in the absence of dispersion (Pel = Pet = ∞); left column:
diagonal solutions; right column: parallel solutions.

The low-resolution results for the MUSCL scheme are similar to those observed for the

WAF scheme. More fingers tend to form if the resolution is increased (Figs. 4.3c,d). This

time breakthrough occurs in the diagonal case as well (Fig. 4.3c). Going to higher reso-

lutions of 400× 400 and 566× 566 cells, respectively, does not improve the considerable

GOE exhibited by this scheme (Figs. 4.3e,f). However, we can see a slight improvement as

compared to the results for the CTU scheme in that the diagonal results show a stronger

trend towards the production well.
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4.3.2 Numerical dispersion of Shubin and Bell

In the previous section we demonstrated the case D ≡ 0. Now we consider a numerical

dispersion tensor suggested by Shubin and Bell [29]. This tensor is based on modified

equation analysis and lead to significant improvements in their study of miscible dis-

placement [29]. We denote the tensor by DSB. It corresponds to equation (3.6.51) with

coefficients αl =
1
2∆x and αt =

1
4∆x in the case of square grid blocks. Equation (3.6.51)

then simplifies to

DSB =
∆x

2 |u|

(

u2 + 1
2v

2 1
2uv

1
2uv v2 + 1

2u
2

)

(4.3.1)

where all coefficients are of order O(∆x) in space.

Applying dispersion has a strong effect on the solution, as can be seen in Figs. 4.4 and 4.5,

respectively. The formation of fingers is reduced as compared to the previous results.

However for neither of the schemes the amount of dispersion is big enough to yield

similar solutions for the diagonal and parallel configuration, respectively. In case of the

CTU scheme, the three fingers observed for the parallel configuration (Figs. 4.2b,d) are

smeared out to form one big finger (Figs. 4.4b,d). The two central fingers exhibited in the

diagonal configuration (Fig. 4.2b) are not separated anymore.

The effects of dispersion become even more apparent for the MUSCL scheme. The fine

fingers exhibited in the high-resolution case (Figs. 4.3c,d) are suppressed completely

(Figs. 4.4c,d) as dispersion is applied. Although there is a better agreement for lower

resolutions (Figs. 4.5a,b), the results exhibit a considerable discrepancy as the grid is re-

fined.
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(a)MUSCL 100× 100 (diagonal) (b)MUSCL 141× 141 (parallel)

(c) MUSCL 200× 200 (diagonal) (d)MUSCL 283× 283 (parallel)

(e)MUSCL 400× 400 (diagonal) (f) MUSCL 566× 566 (parallel)

Figure 4.3: Results for the MUSCL scheme in the absence of dispersion (Pel = Pet = ∞); left
column: diagonal solutions; right column: parallel solutions.
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(a) CTU 100× 100 (diagonal) (b) CTU 141× 141 (parallel)

(c) CTU 200× 200 (diagonal) (d) CTU 283× 283 (parallel)

Figure 4.4: Results for the CTU scheme with the dispersion tensor DSB; left column: diagonal
solutions; right column: parallel solutions.
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(a)MUSCL 100× 100 (diagonal) (b)MUSCL 141× 141 (parallel)

(c) MUSCL 200× 200 (diagonal) (d)MUSCL 283× 283 (parallel)

Figure 4.5: Results for the MUSCL scheme with the dispersion tensor DSB; left column: diagonal
solutions; right column: parallel solutions.
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4.3.3 Modified numerical dispersion

The previous examples suggest that the magnitudes of numerical dispersion, regulated

through αl and αt, are not high enough to suppress the effects of grid orientation in the

range of resolutions we are interested in. Experimenting with different configurations,

we designed a dispersion tensor,DM, that gives improved results for the MUSCL scheme.

Our choice for the coefficients is αl =
3
4∆x and αt =

9
4∆x yielding

DM =
3∆x

4 |u|

(

u2 + 3v2 −2uv

−2uv v2 + 3u2

)

(4.3.2)

where all elements are still of order O(∆x) in space. These coefficients are motivated by

trial and improvement, rather than analytical derivation or theory.

The results obtained for the CTU scheme show better agreement for low resolutions

(Figs. 4.6a,b) whenDM is applied. Furthermore, we can see that the concentration front is

considerably smeared out. For higher resolutions, the choice of αl and αt turns out not to

be suitable. Whereas the diagonal results do not change much (Figs. 4.6a,c), the parallel

solutions (Figs. 4.6b,d) differ substantially.

The situation changes significantly for the MUSCL scheme. Figs. 4.7a,b show a surpris-

ingly good agreement and the GOE is minimal as compared to the previous results. Dou-

bling the resolution has a slight effect on the parallel result (Fig. 4.7d) but the deviation be-

tween the two configurations is still small. Further increasing the resolution to 400× 400

and 566× 566 cells, respectively, we can see that the effects of grid orientation are only

hidden but not eliminated. The diagonal solution (Fig. 4.7e) changes its shape slightly,

whereas the parallel (Fig. 4.7f) remains basically the same. In Fig. 4.11a, the results are

compared for a single contour line. For the range of 100− 200 and 141− 283 cells per

dimension, respectively, the two configurations agree well.

4.3.4 Errors for mass and velocity

Finite volume methods are by definition conservative, since each of the four fluxes used

for updating a cell (i, j) in two spatial dimensions is used for updating a neighbouring

cell as well. Special care must be taken at the domain boundary. Let us consider the

upwind scheme as an easy example. If the velocity vanishes exactly on the boundary for

zero gradient Neumann boundary conditions, all corresponding intercell fluxes FG and

GG will vanish as well according to equation (3.6.18). It is therefore important that the

velocity vanishes exactly at the interface. This is implicitly satisfied by our formulation of

the pressure equation and the way we calculate the velocity. Thus the mass influx from
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(a) CTU 100× 100 (diagonal) (b) CTU 141× 141 (parallel)

(c) CTU 200× 200 (diagonal) (d) CTU 283× 283 (parallel)

Figure 4.6: Results for the CTU scheme with the new dispersion tensor DM; left column: diagonal
solutions; right column: parallel solutions.

the boundary is zero and the mass loss is negligible due to the conservation property of

the finite volume scheme (see Fig. 4.8). Let us denote the total injected mass by mI , the

produced mass by mP, the mass in the system by mS and the lost mass by ∆m. We then

calculate the relative mass error Em with respect to the total mass influx according to

Em :=
∆m

mI
=

∣

∣

∣

∣

mS +mO −mI

mI

∣

∣

∣

∣

. (4.3.3)

The time evolution of the mass error is illustrated in Fig. 4.8. The absolute velocity error,

i.e. the modulus of the velocity summed over the boundary, is identically zero for all

the simulations carried out. The relative tolerance ǫ (see Tab. 4.1) chosen for the elliptic

equation reflects itself in an error of the divergence of the velocity (Fig. 4.9). According

to equation (2.1.17), the divergence of the velocity should be equal to the source term q
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everywhere exactly. Fig. 4.9 shows the time evolution of the L1-divergence error defined

by

L1(∇ · u) := ∆x2 ∑
ij

∣

∣

∣
(∇ · u)ij − qij

∣

∣

∣
(4.3.4)

for different values of ǫ, where (·)ij denotes the numerical approximation at the centre of

the cell (i, j).
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(a)MUSCL 100× 100 (diagonal) (b)MUSCL 141× 141 (parallel)

(c) MUSCL 200× 200 (diagonal) (d)MUSCL 283× 283 (parallel)

(e)MUSCL 400× 400 (diagonal) (f) MUSCL 566× 566 (parallel)

Figure 4.7: Results for the MUSCL scheme with the new dispersion tensor DM; left column: diago-
nal solutions; right column: parallel solutions.
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Figure 4.8: Relative mass error for the partial dispersion case; only every 40th time step is plotted
for readability.
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Figure 4.9: L1-error for the divergence of the velocity as a function of time for various values of ǫ;
settings: MUSCL scheme, Pel = Pet = ∞, 200× 200 cells, diagonal configuration; only every 40th

time step is plotted for readability.
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4.4 PARTIAL DISPERSION STUDY

We can improve the GOE by applying dispersion uniformly over the whole domain. This

approach has the disadvantage that the concentration front is smeared out considerably

(see Figs 4.7a-d). Ideally, we want to provide the necessary stabilization and preserve the

high concentration gradient at the front.

In this section we show that it might be sufficient to stabilize the flow by applying disper-

sion to the cells in the vicinity of the front only. The information about the time evolution

of the front is given by a level set function which is advected with the same velocity field.

For each time step, we can determine the zero crossing of the level set function and flag

a certain range of neighbouring cells, defined by a parameter σ, with respect to the zero

contour line. In order to do this we use a mask of the same dimensions as the concen-

tration array, where each element is set to false initially. Then we determine all the cells,

(i, j), for which the level set function undergoes a zero crossing with respect to the neigh-

bouring cells, (k, l) ∈ [i− 1, i+ 1]× [j− 1, j+ 1], and denote the set by M. Subsequently,

we update the cells [i− σ, i+ σ]× [j− σ, j+ σ] to true for each cell (i, j) ∈ M. Finally, we

apply dispersion only for the flagged cells in order to control the smearing of the front.

The results for this novel approach are presented in Fig. 4.10. The solid black line in

Figs. 4.10 shows the initial front and the dashed line shows the contour ∆x at the end of

the simulation. The level set function is initialized with a circle so that the contour line

∆x coincides with the injection well. Instead of tracking the level zero contour, we track

the level ∆x contour because it is favourable numerically. In the parallel configuration

the level set function is initialized accordingly for the two parts of the domain separated

by the line connecting the production wells.

The quality of the results with regards to the GOE is as good as in the uniform disper-

sion case. However, the new results are clearly improved with respect to front smearing

(Figs. 4.12a,b). The position of the contour line 0.95 shows a stronger trend towards the

production well in the partial dispersion case. The largest deviation is exhibited between

the parallel results, which is still smaller than the largest deviation in the uniform disper-

sion case.
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(a)MUSCL 100× 100 (σ = 6) (b)MUSCL 141× 141 (σ = 6)

(c)MUSCL 200× 200 (σ = 12) (d) MUSCL 283× 283 (σ = 12)

Figure 4.10: Results for the MUSCL scheme for partial dispersion.
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(a) 0.95 contour lines (uniform dispersion)

(b) 0.95 contour lines (partial dispersion)

Figure 4.11: (a) Comparison of the position of the 0.95 contour line for the uniform dispersion case
in Figs. 4.7a-d; (b) the same comparison for the partial dispersion study in Figs. 4.10a-d; σ = 6 for
100× 100 (141× 141) cells and σ = 12 for 200× 200 (283× 283) cells.
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(a) uniform dispersion

(b) partial dispersion

Figure 4.12: Slices from the injection well to the production well: (a) for the results in Figs. 4.7a-d;
(b) for the results in Figs. 4.10a-d; the same color scheme is used as in Fig. 4.11.
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Figure 4.13: Relative mass error with respect to the mass influx as a function of time for the results
in Figs. 4.10a-d; only every 40th time step is plotted for readability.

We expect the mass error to to rise considerably if we only modify flagged cells (see

Fig. 4.13). If dispersion is used for cell (i, j), the concentration will change for that cell

because fluid goes to or comes from neighbouring cells. However if we do not update

the neighbouring cells as well, we get local sources and sinks and hence a high mass error.

In future work, this could be addressed by employing a signed distance level set function

andmodulating the dispersion termwith respect to the distance to the front. Additionally,

some kind of boundary correction between flagged and unflagged cells could be applied.
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Conclusions

Recent simulations of thermal flow in porousmedia exhibit a dependency of the result on

the underlying grid. In this report, we investigated the grid orientation effect exhibited

by various finite volume schemes as applied to the equations of miscible displacement in

the quarter five-spot configuration. These equations are simpler than those used for ther-

mal flow in porous media and hence easier to study. The schemes under investigation

were chosen with respect to their applicability to simulations of thermal flow in porous

media.

The effects of grid orientation strongly depend on the spatial resolution. Even for low

resolutions, the numerical diffusion-dispersion of the scheme is not sufficient anymore

to stabilize the front. Numerical errors can trigger instabilities that cause different results.

Usually, a numerical stabilization term is employed to hide the asymmetries in the spa-

tial discretization. This term is proportional to the spatial resolution and its stabilization

effect decreases as the grid is refined. In previous work, only low-resolution results of

less than 100× 100 cells were considered for a comparison of the two symmetric configu-

rations of the problem.

We investigated resolutions of up to 566× 566 cells and suggested a new numerical dis-

persion tensor for the MUSCL-Hancock scheme. This tensor is a modification of the rota-

tionally invariant dispersion tensor previously used by Shubin and Bell [29]. Employing

the new stabilization term, we were able to minimize the GOE for resolutions between

100× 100 (141× 141) and 200× 200 (283× 283) cells. In addition, we showed that the

effect becomes worse as we increase the resolution further.

High amounts of numerical dispersion were necessary for the range of resolutions under

investigation causing a strong smearing of the concentration front. In this report, we

developed a new scheme based on a level set function which addresses this problem in

a novel way. We suggest applying dispersion only in the vicinity of the front, instead
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of applying it uniformly, in order to reduce smearing whilst providing the necessary

stabilization. The information about the time evolution of the front is provided by a level

set function. The presented numerical results show little dependence on the grid and we

could demonstrate that smearing is reduced considerably as compared to the results for

uniform dispersion.

5.1 FUTURE WORK

In future we want to address the problem of grid orientation in simulations of thermal

flow in porous media. The results in this report are promising and we are confident that

the same methodology is applicable to the more complex system.

With regard to the mass error, we found that the scheme we employ for the parabolic

equation can be cast into a finite volume form. Applying dispersion to a cell will lead

to nonzero intercell fluxes for that cell. If we were to update the neighbouring cells in a

conservative manner, they would get a contribution from that cell even in the absence of

dispersion. Thus, this could serve as a natural boundary correction between cells where

numerical dispersion is applied and unmodified cells.

Alternatively, a continuous approach for reducing the front smearing could be achieved

by restoring the signed distance information of the level set function. This is usually

done by solving an Eikonal equation after the update step. The numerical dispersion

could then be modulated using the distance to the interface, e.g. with a gaussian curve.

We would expect similar improvements for this approach as for the partial dispersion

case, if the modulating function decreases fast away from the interface.

In this work we applied a numerical dispersion tensor, where the longitudinal and trans-

verse magnitudes were proportional to the grid spacing. In future work, we will also

consider a fixed dispersion under high resolution, so that the term can be well resolved.

More advanced methods, such as adaptive mesh refinement (AMR) in combination with a

parallel multigrid solver for the pressure equation, could help us simulate at significantly

higher resolutions than are seen anywhere else in the literature (> 5000 × 5000 cells).

From this we hope to get new insights of how the GOE could behave once we are able to

resolve diffusion-dispersion closer to physical scales.



Bibliography

[1] C. Badura. C++ solvers for sparse systems of linear equations. http://aam.

mathematik.uni-freiburg.de/IAM/Research/projectskr/lin_solver, 1998.

(last access: 16/08/2012).

[2] J.B. Bell, C.N. Dawson, and G.R. Shubin. An unsplit, higher order Godunov

method for scalar conservation laws in multiple dimensions. Journal of Computa-

tional Physics, 74(1):1–24, January 1988.

[3] C.W. Brand, J.E. Heinemann, and K. Aziz. The grid orientation effect in reservoir

simulation. SPE Symposium on Reservoir Simulation, 1991.

[4] A. Briginshaw. Elementary numerical analysis. Technical report, University of

Cambridge, 2011.

[5] C.-Y. Chen and E. Meiburg. Miscible porous media displacements in the quarter

five-spot configuration. Part 1. The homogeneous case. Journal of Fluid Mechanics,

371:233–268, 1998.

[6] W.H. Chen, L.J. Durlofsky, B. Engquist, and S. Osher. Minimization of grid orien-

tation effects through use of higher order finite difference methods. SPE Advanced

Technology Series, 1(2):43–52, 1993.

[7] M.A. Christie and D.J. Bond. Multidimensional flux-corrected transport for reser-

voir simulation. SPE Reservoir Simulation Symposium, 1985.

[8] M.A. Christie and D.J. Bond. Detailed simulation of unstable processes in miscible

flooding. SPE Reservoir Engineering, 2(4):514–522, 1987.

[9] C. Curtis, R. Kopper, E. Decoster, A. Guzmán-Garcia, C. Huggins, L. Knauer,

M. Minner, N. Kupsch, L.M. Linares, H. Rough, and M. Waite. Heavy-oil reservoirs.

Oilfield Review, 14(3), 2002.

65

http://aam.mathematik.uni-freiburg.de/IAM/Research/projectskr/lin_solver
http://aam.mathematik.uni-freiburg.de/IAM/Research/projectskr/lin_solver


66

[10] B.L. Darlow, R.E. Ewing, and M.F. Wheeler. Mixed finite element method for misci-

ble displacement problems in porous media. SPE Journal, 24(4):391–398, 1984.

[11] M.G. Edwards. Cross flow tensors and finite volume approximation with by de-

ferred correction. Computer Methods in Applied Mechanics and Engineering, 151(1-

2):143–161, 1998.

[12] R.E. Ewing. The mathematics of reservoir simulation. SIAM, Philadelphia, 1983.

[13] R.E. Ewing, T.F. Russell, and L.C. Young. An anistropic coarse-grid dispersion

model of heterogeneity and viscous fingering in five-spot miscible displacement

that matches experiments and fine-grid simulations. SPE Symposium on Reservoir

Simulation, February 1989.

[14] R.P. Fedkiw, T.D. Aslam, B. Merriman, and S. Osher. A non-oscillatory Eulerian

approach to interfaces in multimaterial flows (the Ghost Fluid Method). Journal of

Computational Physics, 152(2):457–492, 1999.

[15] G.-S. Jiang and C.-W. Shu. Efficient implementation of weighted ENO schemes.

Journal of Computational Physics, 126(1):202–228, 1996.

[16] S.C.M. Ko and A.D.K. Au. A weighted nine-point finite-difference scheme for elim-

inating the grid orientation effect in numerical reservoir simulation. SPE Annual

Technical Conference and Exhibition, 1979.

[17] J.E. Kozdon. Numerical methods with reduced grid dependency for enhanced oil recovery.

PhD thesis, Stanford University, 2009.

[18] J.E. Kozdon, B. Mallison, and M. Gerritsen. Robust multi-d transport schemes with

reduced grid orientation effects. Transport in Porous Media, 78(1):47–75, October

2009.

[19] S. Lamine and M.G. Edwards. Multidimensional upwind convection schemes for

flow in porous media on structured and unstructured quadrilateral grids. Journal of

Computational and Applied Mathematics, 234(7):2106–2117, August 2010.

[20] R.J. LeVeque. Numerical methods for conservation laws. Birkhäuser, Basel, 1992.

[21] R.J. LeVeque. Wave propagation algorithms for multidimensional hyperbolic sys-

tems. Journal of Computational Physics, 131(2):327–353, 1997.

[22] R.J. LeVeque. Finite volume methods for hyperbolic problems. Cambridge University

Press, New York, 2002.



67

[23] J.M. McDonough. Lectures in computational fluid dynamics of incompressible

flow: Mathematics, algorithms and implementations. Technical report, Depart-

ments of Mechanical Engineering and Mathematics, University of Kentucky, 2007.

[24] F.B.J. Monmont, D.E.A. van Odyck, and N. Nikiforakis. Experimental and theo-

retical study of the combustion of n-triacontane in porous media. Fuel, 93:28–36,

March 2012.

[25] S. Osher and R.P. Fedkiw. Level set methods and dynamic implicit surfaces. Springer-

Verlag, New York, 2003.

[26] P. Petitjeans, C.-Y. Chen, E. Meiburg, and T. Maxworthy. Miscible quarter five-spot

displacements in a Hele-Shaw cell and the role of flow-induced dispersion. Physics

of Fluids, 11(7):1705–1716, 1999.

[27] T. Potempa. An improved implementation of the McCracken and Yanosik nine

point finite difference procedure. Applied Numerical Mathematics, 1(2):261–272, 1985.

[28] G. Shiralkar. Reservoir simulation of generally anisotropic systems. SPE Reservoir

Engineering, 5(3):409–414, 1990.

[29] G.R. Shubin and J.B. Bell. An analysis of the grid orientation effect in numerical

simulation of miscible displacement. Computer Methods in Applied Mechanics and

Engineering, 47(1-2):47–71, 1984.

[30] C.T. Tan and G.M. Homsy. Stability of miscible displacements in porous media:

Radial source flow. Physics of Fluids, 30(5):1239–1245, 1987.

[31] M.R. Todd, P.M. O’Dell, and G.J. Hirasaki. Methods for increased accuracy in nu-

merical reservoir simulators. SPE Journal, 12(6):515–530, 1972.

[32] E.F. Toro. Riemann solvers and numerical methods for fluid dynamics. Springer-Verlag,

Berlin, 2009.

[33] D.E.A. van Odyck, J.B. Bell, F.B.J. Monmont, and N. Nikiforakis. The mathematical

structure of multiphase thermal models of flow in porous media. Proceedings of the

Royal Society A: Mathematical, Physical and Engineering Sciences, 465(2102):523–549,

February 2009.

[34] D.E.A. van Odyck, S. Lovett, F. Monmont, and N. Nikiforakis. An efficient shock

capturing scheme for multicomponent multiphase thermal flow in porous media.

Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences,

July 2012.



68

[35] R. Wang and R.J. Spiteri. Linear instability of the fifth-order WENO method. SIAM

Journal on Numerical Analysis, 45(5):1871–1901, 2007.

[36] J.L. Yanosik and T.A. McCracken. A nine-point, finite-difference reservoir simu-

lator for realistic prediction of adverse mobility ratio displacements. SPE Journal,

19(4):253–262, August 1979.

[37] H.R. Zhang, K.S. Sorbie, and N.B. Tsibuklis. Viscous fingering in five-spot experi-

mental porous media: New experimental results and numerical simulation. Chemi-

cal Engineering Science, 52(1):37–54, January 1997.


	Introduction
	Enhanced oil recovery processes
	Motivation
	Previous work
	Outline

	Miscible displacement
	Governing equations
	Simplifying assumptions
	Adverse displacement

	Quarter five-spot problem
	Well model

	Numerical scheme
	Staggered grid
	Domain boundary
	Elliptic solver
	Transformation to the rotated coordinate system
	Discretization of the pressure equation
	Incorporation of Neumann boundary conditions

	Calculation of the velocity
	Level set solver
	Level set methods
	Level set scheme

	Hyperbolic solver
	Splitting scheme
	Advection equation
	Source term
	Parabolic equation
	Maximum stable time step
	Convergence tests


	Numerical results
	Parameters
	Demonstration of the grid orientation effect
	Comparison for CTU and MUSCL
	No numerical dispersion
	Numerical dispersion of Shubin and Bell
	Modified numerical dispersion
	Errors for mass and velocity

	Partial dispersion study

	Conclusions
	Future work

	Bibliography

